Индукция Математическая, Полная Математическая Индукция


Индукция Математическая, Полная Математическая Индукция
а- средство доказательства общих положений в матемантике и др. дедуктивных науках. Этот прием опирается на использованние двух суждений. Первое представляет собой единичное суждение и наз. базой индукции. В нем доказывается, что 1 обладает некоторым свойством (S(1)). Второе суждение - общее условное. В нем утвержндается, что если произвольное число п обладает свойством S (т. наз. индуктивное предположение), то и непосредственно следующее за ним (в натуральном ряду) число n+1 также обладает этим свойством S (т. наз. индукционный шаг). Это т.наз. наследуемость свойства S в натуральном ряду чисел 1, 2, 3, 4, 5, ..., n, n+1 ... Если первое и второе положения верны, то можно сделать заключение, что и все натуральные числа обладают свойством S, что S принадлежит всенму бесконечному множеству натуральных чисел. Символически это доказательство записывается так: S(1)& "n(S(n)->S(n+1)) о" mS(m). Доказательство некоторого общего математического суждения может быть продемонстрировано последовательностью процедур: из " n(S(n) ->S(n+1)) по правилам логики могут быть получе- ны следующие суждения: S(1)->S(2) (1), S(2)->S(3) (2), S(3)->S(4) (3)... и т. д. Поскольку же нам надо 5(1), то из сужденния (1) мы получаем по модус поненс S(2); поскольку нам дано S(2), мы из (2) можем получить 5( 3); поскольку нам дано S(3), мы из (3) можем получить 5(4), и т. д. до бесконечности. Это и означает доказанность истинности общего суждения "mS(m).

Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. . 1997.

Смотреть что такое "Индукция Математическая, Полная Математическая Индукция" в других словарях:

  • МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ — полная математическая индукция (наз. в математике часто просто полной индукцией; в этом случае это понятие следует отличать от рассматриваемого в нематематич. формальной логике понятия полной индукции), – прием доказательства общих предложений в… …   Философская энциклопедия

  • индукция математическая — (ПОЛНАЯ МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ) средство доказательства общих положений в математике и др. дедуктивных науках. Этот прием опирается на использование двух суждений. Первое представляет собой единичное суждение и наз. базой индукции. В нем… …   Словарь терминов логики

  • Индукция — В Викисловаре есть статья «индукция» Индукция (из лат. inductio «выведение, наведен …   Википедия

  • индукция —         ИНДУКЦИЯ (от лат. inductio выведение; возбуждение) этот термин в современной логике используется как синоним более точного, но более громоздкого, термина «индуктивное рассуждение». Индуктивное рассуждение содержит переход от эмпирически… …   Энциклопедия эпистемологии и философии науки

  • ПРОГРАММИРОВАНИЕ ТЕОРЕТИЧЕСКОЕ — математическая дисциплина, изучающая математич. абстракции программ, трактуемых как объекты, выраженные на формальном языке, обладающие определенной информационной и логич. структурой и подлежащие исполнению на автоматич. устройствах. П. т.… …   Математическая энциклопедия

  • Список статей по математической логике —   Это служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не ус …   Википедия

  • НАУКА — особый вид познавательной деятельности, направленный на выработку объективных, системно организованных и обоснованных знаний о мире. Взаимодействует с др. видами познавательной деятельности: обыденным, художественным, религиозным, мифологическим …   Философская энциклопедия

  • УМОЗАКЛЮЧЕНИЕ — мыслительный процесс, в ходе которого из одного или нескольких суждений, называемых посылками, выводится новое суждение, называемое заключением, или следствием. У. обычно подразделяют на дедуктивные и индуктивные. Заключения дедуктивных У., если… …   Философская энциклопедия

  • ДЕДУКЦИЯ — категория философии и методологии науки, имеющая два основных значения: 1) вывод от общего знания к менее общему, частному и даже единичному (с помощью правила подстановки вместо общих терминов их конкретных значений); 2) всякий логический вывод …   Философия науки: Словарь основных терминов

  • умозаключение —         УМОЗАКЛЮЧЕНИЕ процедура непосредственного выведения некоторого высказывания из одного или нескольких высказываний. Высказывания, из которых делается вывод, называют посылками, а высказывание, которое выводится из посылок, заключением. У… …   Энциклопедия эпистемологии и философии науки


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.