unital subring
Смотреть что такое "unital subring" в других словарях:
Depth of noncommutative subrings — In ring theory and Frobenius algebra extensions, fields of mathematics, there is a notion of depth two subring or depth of a Frobenius extension. The notion of depth two is important in a certain noncommutative Galois theory, which generates Hopf … Wikipedia
Eisenstein ideal — In mathematics, the Eisenstein ideal is a certain ideal in the endomorphism ring of the Jacobian variety of a modular curve. It was introduced by Barry Mazur in 1977, in studying the rational points of modular curves. The endomorphism ring in… … Wikipedia
Ring (mathematics) — This article is about algebraic structures. For geometric rings, see Annulus (mathematics). For the set theory concept, see Ring of sets. Polynomials, represented here by curves, form a ring under addition and multiplication. In mathematics, a… … Wikipedia
List of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… … Wikipedia
Composition ring — In mathematics, a composition ring, introduced in (Adler 1962), is a commutative ring (R, 0, +, −, ·), possibly without an identity 1 (see non unital ring), together with an operation such that, for any three elements one has … Wikipedia
Quaternion — Quaternions, in mathematics, are a non commutative extension of complex numbers. They were first described by the Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three dimensional space. They find uses in both… … Wikipedia
Polynomial ring — In mathematics, especially in the field of abstract algebra, a polynomial ring is a ring formed from the set of polynomials in one or more variables with coefficients in another ring. Polynomial rings have influenced much of mathematics, from the … Wikipedia
Injective module — In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z module Q of all rational numbers. Specifically, if Q is a submodule of some… … Wikipedia
Primitive ring — In mathematics, especially in the area of abstract algebra known as ring theory, the concept of left primitive ring generalizes that of matrix algebra. Every matrix ring is the endomorphism ring of a finite dimensional vector space, but a… … Wikipedia
Algebra (ring theory) — In mathematics, specifically in ring theory, an algebra over a commutative ring is a generalization of the concept of an algebra over a field, where the base field K is replaced by a commutative ring R .Any ring can be thought of as an algebra… … Wikipedia
Kernel (algebra) — In the various branches of mathematics that fall under the heading of abstract algebra, the kernel of a homomorphism measures the degree to which the homomorphism fails to be injective. An important special case is the kernel of a matrix, also… … Wikipedia