- undecidable arithmetic
- мат. неразрешимая арифметика
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Undecidable problem — In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is impossible to construct an algorithm that leads to a yes or no answer the problem is not decidable.A decision problem is any … Wikipedia
On Formally Undecidable Propositions of Principia Mathematica and Related Systems — This article describes the publication details of a famous paper in mathematical logic. For information about the theorems proved in this paper, see Gödel s incompleteness theorems. Über formal unentscheidbare Sätze der Principia Mathematica und… … Wikipedia
Robinson arithmetic — In mathematics, Robinson arithmetic, or Q, is a finitely axiomatized fragment of Peano arithmetic (PA), first set out in Robinson (1950). Q is essentially PA without the axiom schema of induction. Even though Q is much weaker than PA, it is still … Wikipedia
History of the Church–Turing thesis — This article is an extension of the history of the Church–Turing thesis. The debate and discovery of the meaning of computation and recursion has been long and contentious. This article provides detail of that debate and discovery from Peano s… … Wikipedia
History of the Church-Turing thesis — This article is an extension of the history of the Church Turing thesis.The debate and discovery of the meaning of computation and recursion has been long and contentious. This article provides detail of that debate and discovery from Peano s… … Wikipedia
Satisfiability Modulo Theories — (SMT) problem is a decision problem for logical formulas with respect to combinations of background theories expressed in classical first order logic with equality. Examples of theories typically used in computer science are the theory of real… … Wikipedia
Gödel's incompleteness theorems — In mathematical logic, Gödel s incompleteness theorems, proved by Kurt Gödel in 1931, are two theorems stating inherent limitations of all but the most trivial formal systems for arithmetic of mathematical interest. The theorems are of… … Wikipedia
Decidability (logic) — In logic, the term decidable refers to the decision problem, the question of the existence of an effective method for determining membership in a set of formulas. Logical systems such as propositional logic are decidable if membership in their… … Wikipedia
Recursion theory — Recursion theory, also called computability theory, is a branch of mathematical logic that originated in the 1930s with the study of computable functions and Turing degrees. The field has grown to include the study of generalized computability… … Wikipedia
Computability theory — For the concept of computability, see Computability. Computability theory, also called recursion theory, is a branch of mathematical logic that originated in the 1930s with the study of computable functions and Turing degrees. The field has grown … Wikipedia
metalogic — /met euh loj ik/, n. the logical analysis of the fundamental concepts of logic. [1835 45; META + LOGIC] * * * Study of the syntax and the semantics of formal languages and formal systems. It is related to, but does not include, the formal… … Universalium