semisimple pair
Смотреть что такое "semisimple pair" в других словарях:
Glossary of semisimple groups — This is a glossary for the terminology applied in the mathematical theories of semisimple Lie groups. It also covers terms related to their Lie algebras, their representation theory, and various geometric, algebraic and combinatorial structures… … Wikipedia
Zonal spherical function — In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K invariant vector in an… … Wikipedia
Littelmann path model — In mathematics, the Littelmann path model is a combinatorial device due to Peter Littelmann for computing multiplicities without overcounting in the representation theory of symmetrisable Kac Moody algebras. Its most important application is to… … Wikipedia
Prehomogeneous vector space — In mathematics, a prehomogeneous vector space (PVS) is a finite dimensional vector space V together with a subgroup G of GL( V ) such that G has an open dense orbit in V . Prehomogeneous vector spaces were introduced by Mikio Sato in 1970 and… … Wikipedia
Cartan decomposition — The Cartan decomposition is a decomposition of a semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition of matrices. Cartan involutions on Lie … Wikipedia
Kazhdan–Lusztig polynomial — In representation theory, a Kazhdan–Lusztig polynomial P y,w ( q ) is a member of a family of integral polynomials introduced in work of David Kazhdan and George Lusztig Harv|Kazhdan|Lusztig|1979. They are indexed by pairs of elements y , w of a… … Wikipedia
Depth of noncommutative subrings — In ring theory and Frobenius algebra extensions, fields of mathematics, there is a notion of depth two subring or depth of a Frobenius extension. The notion of depth two is important in a certain noncommutative Galois theory, which generates Hopf … Wikipedia
Quantum group — In mathematics and theoretical physics, quantum groups are certain noncommutative algebras that first appeared in the theory of quantum integrable systems, and which were then formalized by Vladimir Drinfel d and Michio Jimbo. There is no single … Wikipedia
Group ring — This page discusses the algebraic group ring of a discrete group; for the case of a topological group see group algebra, and for a general group see Group Hopf algebra. In algebra, a group ring is a free module and at the same time a ring,… … Wikipedia
Discrete series representation — In mathematics, a discrete series representation is an irreducible unitary representation of a locally compact topological group G that is a subrepresentation of the left regular representation of G on L²(G). In the Plancherel measure, such… … Wikipedia
List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… … Wikipedia