semisimple operator

semisimple operator
мат. полупростой оператор

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Поможем решить контрольную работу

Смотреть что такое "semisimple operator" в других словарях:

  • Semisimple — This article is about mathematical use. For the philosophical reduction thinking, see Reduction (philosophy). In mathematics, the term semisimple (sometimes completely reducible) is used in a number of related ways, within different subjects. The …   Wikipedia

  • Diagonalizable matrix — In linear algebra, a square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P such that P −1AP is a diagonal matrix. If V is a finite dimensional vector space, then a linear …   Wikipedia

  • Zonal spherical function — In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K invariant vector in an… …   Wikipedia

  • Jordan–Chevalley decomposition — In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley (also known as Dunford decomposition, named after Nelson Dunford, as well as SN decomposition), expresses a linear operator as the sum of its… …   Wikipedia

  • Plancherel theorem for spherical functions — In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish Chandra. It is a natural generalisation in non commutative harmonic… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Lie algebra — In mathematics, a Lie algebra is an algebraic structure whose main use is in studying geometric objects such as Lie groups and differentiable manifolds. Lie algebras were introduced to study the concept of infinitesimal transformations. The term… …   Wikipedia

  • Representation theory — This article is about the theory of representations of algebraic structures by linear transformations and matrices. For the more general notion of representations throughout mathematics, see representation (mathematics). Representation theory is… …   Wikipedia

  • Casimir invariant — In mathematics, a Casimir invariant or Casimir operator is a distinguished element of the centre of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir invariant… …   Wikipedia

  • Séminaire Nicolas Bourbaki (1950–1959) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s. 1950/51 series *33 Armand Borel, Sous groupes compacts maximaux des groupes de Lie, d après Cartan, Iwasawa et Mostow (maximal compact subgroups) *34 Henri Cartan, Espaces… …   Wikipedia

  • Atiyah–Singer index theorem — In the mathematics of manifolds and differential operators, the Atiyah–Singer index theorem states that for an elliptic differential operator on a compact manifold, the analytical index (closely related to the dimension of the space of solutions) …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»