- real homomorphism
- мат. вещественный гомоморфизм
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Homomorphism — In abstract algebra, a homomorphism is a structure preserving map between two algebraic structures (such as groups, rings, or vector spaces). The word homomorphism comes from the Greek language: ὁμός (homos) meaning same and μορφή (morphe)… … Wikipedia
Group homomorphism — In mathematics, given two groups ( G , *) and ( H , ·), a group homomorphism from ( G , *) to ( H , ·) is a function h : G → H such that for all u and v in G it holds that: h(u*v) = h(u) h(v) where the group operation on the left hand side of the … Wikipedia
Chern–Weil homomorphism — In mathematics, the Chern–Weil homomorphism is a basic construction in the Chern–Weil theory, relating for a smooth manifold M the curvature of M to the de Rham cohomology groups of M, i.e., geometry to topology. This theory of Shiing Shen Chern… … Wikipedia
Ring homomorphism — In ring theory or abstract algebra, a ring homomorphism is a function between two rings which respects the operations of addition and multiplication. More precisely, if R and S are rings, then a ring homomorphism is a function f : R → S such that … Wikipedia
Chern-Weil homomorphism — In mathematics, the Chern Weil homomorphism is a basic construction in the Chern Weil theory, relating for a smooth manifold M the curvature of M to the de Rham cohomology groups of M , i.e., geometry to topology. This theory of Shiing Shen Chern … Wikipedia
Construction of the real numbers — In mathematics, there are several ways of defining the real number system as an ordered field. The synthetic approach gives a list of axioms for the real numbers as a complete ordered field. Under the usual axioms of set theory, one can show that … Wikipedia
Lie group — Lie groups … Wikipedia
Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… … Wikipedia
Structure (mathematical logic) — In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations which are defined on it. Universal algebra studies structures that generalize the algebraic structures such as… … Wikipedia
Lorentz group — Group theory Group theory … Wikipedia
Ring (mathematics) — This article is about algebraic structures. For geometric rings, see Annulus (mathematics). For the set theory concept, see Ring of sets. Polynomials, represented here by curves, form a ring under addition and multiplication. In mathematics, a… … Wikipedia