punctured plane
Смотреть что такое "punctured plane" в других словарях:
Complex plane — Geometric representation of z and its conjugate in the complex plane. The distance along the light blue line from the origin to the point z is the modulus or absolute value of z. The angle φ is the argument of z. In mathematics … Wikipedia
Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia
Monodromy — In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology and algebraic and differential geometry behave as they run round a singularity. As the name implies, the fundamental meaning of monodromy comes… … Wikipedia
Annulus (mathematics) — In mathematics, an annulus (the Latin word for little ring , with plural annuli ) is a ring shaped geometric figure, or more generally, a term used to name a ring shaped object. The adjectival form is annular (for example, an annular eclipse).The … Wikipedia
Closed and exact differential forms — In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form that is the exterior derivative of another … Wikipedia
Geodesic manifold — In mathematics, a geodesic manifold (or geodesically complete manifold) is a surface on which any two points can be joined by a shortest path, called a geodesic.DefinitionLet (M, g) be a (connected) (pseudo ) Riemannian manifold, and let gamma :… … Wikipedia
Winding number — The term winding number may also refer to the rotation number of an iterated map. This curve has winding number two around the point p. In mathematics, the winding number of a closed curve in the plane around a given point is an integer… … Wikipedia
Riemann mapping theorem — In complex analysis, the Riemann mapping theorem states that if U is a simply connected open subset of the complex number plane Bbb C which is not all of Bbb C, then there exists a biholomorphic (bijective and holomorphic) mapping f, from U, onto … Wikipedia
Antiderivative (complex analysis) — In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex valued function g is a function whose complex derivative is g. More precisely, given an open set U in the complex plane and a function the antiderivative … Wikipedia
Montel's theorem — In complex analysis, an area of mathematics, Montel s theorem refers to one of two theorems about families of holomorphic functions. These are named after Paul Montel, and give conditions under which a family of holomorphic functions is normal.… … Wikipedia
Riemannian manifold — In Riemannian geometry, a Riemannian manifold ( M , g ) (with Riemannian metric g ) is a real differentiable manifold M in which each tangent space is equipped with an inner product g in a manner which varies smoothly from point to point. The… … Wikipedia