- predicative arithmetic
- арифметика предикатов
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Axiom schema of predicative separation — In axiomatic set theory, the axiom schema of predicative separation, or of restricted, or Delta;0 separation, is a schema of axioms which is a restriction of the usual axiom schema of separation in Zermelo Fraenkel set theory. It only asserts the … Wikipedia
Constructivism (mathematics) — In the philosophy of mathematics, constructivism asserts that it is necessary to find (or construct ) a mathematical object to prove that it exists. When one assumes that an object does not exist and derives a contradiction from that assumption,… … Wikipedia
Тетрация — (гипероператор 4) в математике итерационная функция экспоненты, следующий гипероператор после возведения в степень. Тетрация используется для описания больших чисел. Термин «тетрация», состоящий из слов «тетра » (четыре) и «итерация»… … Википедия
Edward Nelson — (* 4. Mai 1932 in Decatur in Georgia) ist ein US amerikanischer Mathematiker, der sich mit Analysis, mathematischer Physik, Wahrscheinlichkeitstheorie und Logik beschäftigt. Inhaltsverzeichnis 1 Leben und Werk 2 Schriften 3 Webl … Deutsch Wikipedia
Logicism — is one of the schools of thought in the philosophy of mathematics, putting forth the theory that mathematics is an extension of logic and therefore some or all mathematics is reducible to logic.[1] Bertrand Russell and Alfred North Whitehead… … Wikipedia
Principia Mathematica — For Isaac Newton s book containing basic laws of physics, see Philosophiæ Naturalis Principia Mathematica. The title page of the shortened version of the Principia Mathematica to *56. The Principia Mathematica is a three volume work on the… … Wikipedia
Reverse mathematics — is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. The method can briefly be described as going backwards from the theorems to the axioms. This contrasts with the ordinary… … Wikipedia
Mathematical logic — (also known as symbolic logic) is a subfield of mathematics with close connections to foundations of mathematics, theoretical computer science and philosophical logic.[1] The field includes both the mathematical study of logic and the… … Wikipedia
mathematics, foundations of — Scientific inquiry into the nature of mathematical theories and the scope of mathematical methods. It began with Euclid s Elements as an inquiry into the logical and philosophical basis of mathematics in essence, whether the axioms of any system… … Universalium
Phenomenology (The beginnings of) — The beginnings of phenomenology Husserl and his predecessors Richard Cobb Stevens Edmund Husserl was the founder of phenomenology, one of the principal movements of twentieth century philosophy. His principal contribution to philosophy was his… … History of philosophy
Large countable ordinal — In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of… … Wikipedia