nondegenerate

nondegenerate
невырожденный nondegenerate [nonsingular] collineation ≈ невырожденная коллинеация nondegenerate critical point ≈ невырожденная критическая точка - nondegenerate complex - nondegenerate cone - nondegenerate conic - nondegenerate continuum - nondegenerate correlation - nondegenerate correspondence - nondegenerate curve - nondegenerate dilatation - nondegenerate distribution - nondegenerate eigenfunction - nondegenerate eigenvalue - nondegenerate face - nondegenerate field - nondegenerate form - nondegenerate function - nondegenerate gas - nondegenerate hexagon - nondegenerate ideal - nondegenerate interval - nondegenerate lattice - nondegenerate manifold - nondegenerate matrix - nondegenerate polyhedron - nondegenerate quadric - nondegenerate representation - nondegenerate retraction - nondegenerate series - nondegenerate set - nondegenerate simplex - nondegenerate solution - nondegenerate space - nondegenerate state - nondegenerate subcontinuum - nondegenerate surface - nondegenerate tensor - nondegenerate transformation - nondegenerate vector - nondegenerate zero

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "nondegenerate" в других словарях:

  • nondegenerate — adj., n.; nondegenerately, adv.; nondegenerateness, n. * * * …   Universalium

  • nondegenerate — adjective Not degenerate …   Wiktionary

  • nondegenerate — adj., n.; nondegenerately, adv.; nondegenerateness, n …   Useful english dictionary

  • Bilinear form — In mathematics, a bilinear form on a vector space V is a bilinear mapping V × V → F , where F is the field of scalars. That is, a bilinear form is a function B : V × V → F which is linear in each argument separately::egin{array}{l} ext{1. }B(u + …   Wikipedia

  • Degenerate form — For other uses, see Degeneracy. In mathematics, specifically linear algebra, a degenerate bilinear form ƒ(x,y) on a vector space V is one such that the map from V to V * (the dual space of V) given by is not an isomorphism. An equivalent… …   Wikipedia

  • Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… …   Wikipedia

  • Symplectic vector space — In mathematics, a symplectic vector space is a vector space V equipped with a nondegenerate, skew symmetric, bilinear form omega; called the symplectic form. Explicitly, a symplectic form is a bilinear form omega; : V times; V rarr; R which is *… …   Wikipedia

  • Vector calculus — Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus  Derivative Change of variables Implicit differentiation Taylor s theorem Related rates …   Wikipedia

  • Dual space — In mathematics, any vector space, V, has a corresponding dual vector space (or just dual space for short) consisting of all linear functionals on V. Dual vector spaces defined on finite dimensional vector spaces can be used for defining tensors… …   Wikipedia

  • Metric tensor — In the mathematical field of differential geometry, a metric tensor is a type of function defined on a manifold (such as a surface in space) which takes as input a pair of tangent vectors v and w and produces a real number (scalar) g(v,w) in a… …   Wikipedia

  • Quadratic form — In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables. For example, is a quadratic form in the variables x and y. Quadratic forms occupy a central place in various branches of mathematics, including… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»