- differentiable manifold
- мат. дифференцируемое многообразие
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… … Wikipedia
differentiable manifold — Math. a manifold having the property that any two overlapping open sets are homeomorphic to locally Euclidean spaces whose coordinates are related by differentiable functions, a property with wide applications in mathematical physics and… … Universalium
differentiable manifold — Math. a manifold having the property that any two overlapping open sets are homeomorphic to locally Euclidean spaces whose coordinates are related by differentiable functions, a property with wide applications in mathematical physics and… … Useful english dictionary
Manifold — For other uses, see Manifold (disambiguation). The sphere (surface of a ball) is a two dimensional manifold since it can be represented by a collection of two dimensional maps. In mathematics (specifically in differential geometry and topology),… … Wikipedia
Differentiable function — A differentiable function The absolute value function is not … Wikipedia
Riemannian manifold — In Riemannian geometry, a Riemannian manifold ( M , g ) (with Riemannian metric g ) is a real differentiable manifold M in which each tangent space is equipped with an inner product g in a manner which varies smoothly from point to point. The… … Wikipedia
Pseudo-Riemannian manifold — In differential geometry, a pseudo Riemannian manifold (also called a semi Riemannian manifold) is a generalization of a Riemannian manifold. It is one of many things named after Bernhard Riemann. The key difference between the two is that on a… … Wikipedia
Topological manifold — In mathematics, a topological manifold is a Hausdorff topological space which looks locally like Euclidean space in a sense defined below. Topological manifolds form an important class of topological spaces with applications throughout… … Wikipedia
Finsler manifold — In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M with a Banach norm defined over each tangent space, smoothly depending on position, and (usually) assumed to satisfy the following… … Wikipedia
CR manifold — In mathematics, a CR manifold is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge. Formally, a CR manifold is a… … Wikipedia
Density on a manifold — In mathematics, and specifically differential geometry, a density is a spatially varying quantity on a differentiable manifold which can be integrated in an intrinsic manner. Abstractly, a density is a section of a certain trivial line bundle,… … Wikipedia