- Навье — Стокса уравнения
- Навье — Стокса уравнения
-
(по имени Л. М. А. Навье и Дж. Стокса) — фундаментальная система уравнений аэро- и гидродинамики, выражающая в дифференциальной форме закон сохранения количества движения; впервые были выведены Л. М. А. Навье (1822) и С. Д. Пуассоном (1829) на основе упрощённой молекулярной модели для газов, А. Ж. К. Сен-Венаном (1843) и Дж. Стоксом (1845) на основе континуального подхода. В последнем случае при применении теоремы о сохранении количества движения к элементарному объёму жидкости наряду с напряжениями давления учитываются вязкие напряжения и предполагается линейная зависимость тензора напряжений от тензора скоростей деформации.
H. — С. у. переходят в Эйлера уравнения. Решение Н. — С. у. должно удовлетворять заданным начальным и граничным условиям, последние зависят от рода исследуемой задачи. Для твёрдого тела с непроницаемой поверхностью, движущегося в покоящейся среде, они представляют собой условия прилипания на обтекаемой поверхности и условия затухания вносимых телом возмущений на больших расстояниях от неё. Н. — С. у. замыкаются неразрывности уравнением, имеют в общем случае седьмой порядок, и нахождение решения из-за нелинейности сопряжено с очень большими трудностями.
В частных случаях Н. — С. у. допускают точные решения. Среди них выделяется класс течений, в которых движение происходит лишь в одном направлении.
При движении сжимаемой среды Н. — С. у. имеют более сложный вид, и для их замыкания кроме уравнения неразрывности используются энергии уравнение и уравнение состояния среды.
Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.
.