- ЛАЗЕРНЫЙ ГИРОСКОП
- ЛАЗЕРНЫЙ ГИРОСКОП
-
(см. КВАНТОВЫЙ ГИРОСКОП).
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- ЛАЗЕРНЫЙ ГИРОСКОП
-
(фотонный гироскоп) - квантовый гироскоп, чувствительным элементом к-рого является кольцевой лазер, генерирующий 2 встречные волны. Действие Л. г. основано на зависимости разности собств. частот кольцевого оптического резонатора для встречных волн от скорости его вращения относительно инерциальной системы отсчёта. В отличие от волоконно-оптического гироскопа, регистрирующего угл. скорость вращения, Л. г. позволяет определять изменение угла поворота.
Рис. 1. Принципиальная схема лазерного гироскопа: З t -З 3 - зеркала; А - активная среда; З 4, З 5 - зеркала смесителя встречзых волн (З 6 - полупрозрачное); Н- невзаимный элемент; Ф - фотодетектор; П - блок питания; С - система стабилизации параметров лазера; И - система обработки информации.
Резонатор кольцевого лазера состоит из 3 (или 4) отражателей (зеркал или призм), установленных на Жёстком основании и обеспечивающих замкнутую траекторию (треугольник или прямоугольник) для встречных волн (рис. 1). Возникновение разности частот встречных волн следует из зависимости времени обхода светом вращающегося контура от скорости вращения и направления обхода. Согласно общей теории относительности, разность времён обхода вращающегося контура
(в приближении малости линейной скорости вращения по сравнению со скоростью света с )записывается в виде, к-рый может быть интерпретирован и в рамках классич. кинематики:
Здесь
-время обхода неподвижного контура, S, L - площадь и оптич. периметр контура (с учётом показателя преломления),
- угл. скорость вращения (в рад/с),
- угол между осью вращения и нормалью к плоскости контура.
Т. к.
связана с различием оптич. путей встречных волн соотношением
, a L определяет собств. частоты резонатора, частоты вращающегося кольцевого резонатора для встречных волн
(+ для волны, распространяющейся по направлению вращения) становятся разными:
Здесь
- частота волн в неподвижном резонаторе (m - целое число). Разность (
) не зависит от формы контура, положения оси вращения относительно центра резонатора и может быть записана в виде
где K=4S/
L наз. масштабным коэф. Л. г.,
= = (
)/2 - длина волны излучения покоящегося Л. г.
Разностная частота
(
10-2-105 Гц) выделяется фотодетектором при пространств. совмещении (смешении) небольшой части энергии (
0,1%) встречных световых волн (
1014 Гц), выведенной из кольцевого резонатора (31, 32, 33) через выходное частично прозрачное зеркало 33. Смеситель состоит из зеркал 34, 35 (35 - полупрозрачное; рис. 1) или спец. призмы с углом при вершине
90°. Синусоидальный сигнал на выходе фотодетектора преобразуется в измерит. устройстве в последовательность импульсов, регистрируемых счётчиком. Число импульсов пропорц. углу поворота в плоскости кольцевого лазера. Один импульс на
выходе счётчика соответствует повороту Л. г. на
Большая величина К позволяет измерять малые скорости вращения при небольших размерах Л. г. Напр., для кольцевого гелий-неонового лазера (
=6,328
10-6 см), имеющего резонатор в виде квадрата со стороной 10 см, K=1,58 105. При этом суточное вращение Земли, происходящее с угл. скоростью 15 град/ч и регистрируемое на широте 60°, должно давать
10 Гц. Считая угл. скорость вращения Земли известной и постоянной, можно с точностью
определить широту, на к-рой расположен Л. г.
С квантовомеханич. точки зрения Л. г. представляет собой прибор, вращение к-рого вызывает изменение энергий
и орбитальных моментов
макроскопич. "орбит" фотонов, распространяющихся во встречных направлениях:
где
- величины проекций орбитальных моментов на нормаль к плоскости кольцевого резонатора,
= 2S/L - эффективный радиус орбиты. Из (4) следует, что
. Учитывая, что
, получим выражение (3).
Зависимость
(выходная характеристика Л. г., рис. 2) в реальном кольцевом лазере отличается от (3) из-за влияния нелинейных свойств активной среды и наличия связи встречных волн вследствие обратного рассеяния. В области малых
связь встречных волн приводит к захвату их частот (см. Затягивание частоты). Поэтому выходная характеристика Л. г. имеет область нечувствительности к вращению (зону захвата -
,
). Кроме того, зависимость
имеет ги-стерезисный характер: частоты, соответствующие входу в зону захвата (
) и выходу из неё (
), различны. При изменении величины обратного рассеяния R и фазы
рассеянных волн
изменяется в пределах
где
-величина зоны захвата (
=0 при
<
). Для лучших Л. г.
10-3 рад/с.
Для регистрации малых
в Л. г. создаётся нач. частотное расщепление встречных волн
с помощью небольших (
) в общем случае непериодических угл. колебаний кольцевого лазера. Нач. расщепление может быть создано также с помощью помещаемых внутрь кольцевого резонатора частотных невзаимных элементов. Наиб. часто используются невзаимные элементы на основе Фарадея эффекта.
Рис. 2. Частотные характеристики лазерного гироскопа: 1 - идеальная (
), 2, 3 - теоретические [
=
], 4 - область реальной характеристики.
В качестве активной среды в Л. г. обычно используется газовая смесь двух изотопов неона (20Ne, 22Ne) с Не, характеризующаяся неоднородно уширенной линией рабочего перехода. Это позволяет устранить конкурентное взаимодействие встречных волн и полунить высокую стабильность. Исследуются кольцевые лазеры с кристаллич. или стеклообразной активной средой.
Предельная точность измерения
10 -4 град/ч определяется естеств. флуктуациями разности частот встречных волн в кольцевом лазере. В реальных Л. г. достигается погрешность измерения
10-2-10-3 град/ч при времени измерения
1 с.
Преимущества Л. г. перед традиц. механич. гироскопами: возможность использования в системах, где гироскоп жёстко связан с движущимся объектом; цифровой выход информации; большой диапазон
; малая чувствительность к перегрузкам и малое время (
1 с) запуска.
Лит.: Ароновиц Ф., Лазерные гироскопы, в кн.: Применения лазеров, пер. с англ., М., 1974; Бычков С. И., Лукьянов Д. П., Бакаляр А. И., Лазерный гироскоп, М., 1975; Курицки М. М., Голдстайн М. С., Инерциальная навигация, пер. с англ., "ТИИЭР", 1989, т. 71, № 10, с. 47. Я. В. Кравцов, А. Н. Шелаев.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.