- КИНЕТИКА ФИЗИЧЕСКАЯ
- КИНЕТИКА ФИЗИЧЕСКАЯ
-
- микроскопич. теория процессов в неравновесных средах. В К. ф. методами квантовой или классич. статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в разл. физ. системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внеш. полей.
В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, К. ф. исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрич. и магн. проницаемости и др. характеристики сплошных сред.
К. ф. включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистич. теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах (диэлектриках, металлах и полупроводниках) и жидкостях, кинетику магн. процессов и теорию кинетич. явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.
Если известна ф-ция распределения всех частиц системы по их координатам и импульсам в зависимости от времени (в квантовом случае - статистич. оператор), то можно вычислить все характеристики неравновесной системы. Вычисление полной ф-ции распределения является практически неразрешимой задачей, но для определения мн. свойств физ. систем, напр. потока энергии или импульса, достаточно знать ф-цию распределения небольшого числа частиц, а для газов малой плотности - одной частицы.
В К. ф. используется существ. различие времён релаксации в неравновесных процессах (иерархия времён релаксации), напр. для газа из частиц или квазичастиц время свободного пробега значительно больше времени столкновения между частицами. Это позволяет перейти от полного описания неравновесного состояния ф-цией распределения по всем координатам и импульсам к сокращённому описанию при помощи ф-ции распределения одной частицы по её координатам и импульсам.
Кинетическое уравнение. Осн. метод К. ф. - решение кинетического уравнения Больцмана для одночастичной ф-ции распределения f(x, р, t) молекул в фазовом пространстве их координат x и импульсов р. Ф-ция распределения удовлетворяет кинетич. ур-нию
где Stf - интеграл столкновений, определяющий разность числа частиц, приходящих в элемент объёма вследствие прямых столкновений и убывающих из него вследствие обратных столкновений. Для одноатомных молекул или для многоатомных, но без учёта их внутр. степеней свободы
где - вероятность столкновения, связанная с диф-ференц. эфф. сечением рассеяния da:
где р, р1 - импульсы молекул до столкновения, v,v1 - соответств. скорости, - их импульсы после столкновения, f, f1 - ф-ции распределения молекул до столкновения, - их ф-ции распределения после столкновения. Для газа из сложных молекул, обладающих внутр. степенями свободы, их следует учитывать в ф-ции распределения. Напр., для двухатомных молекул с собств. моментом вращения М ф-ции распределения будут зависеть также от М.
Из кинетич. ур-ния следует Больцмана Н-теорема - убывание со временем Я-функции Больцмана (ср. логарифма ф-ции распределения) или возрастание энтропии, т. к. она равна Я-функции Больцмана с обратным знаком.
Уравнения переноса. К. ф. позволяет получить ур-ния баланса ср. плотностей вещества, импульса и энергии. Напр., для простого газа плотность , гидро-динамич. скорость V и ср. энергия удовлетворяют ур-ниям баланса:
тензор плотности потока импульса, п - плотность числа частиц, - плотность потока энергии.
Если состояние газа мало отличается от равновесного, то в малых элементах объёма устанавливается распределение, близкое к локально равновесному Максвелла распределению,
с темп-рой, плотностью и гидродинамич. скоростью, соответствующими рассматриваемой точке газа. В этом случае неравновесная ф-ция распределения мало отличается от локально равновесной и решение кинетич.
ур-ния даёт малую поправку к последней, пропорциональную градиентам темп-ры и гидродинамич. скорости , т. к. .С помощью неравновесной ф-ции распределения можно найти поток энергии (в неподвижной жидкости) , где - коэф. теплопроводности, и тензор плотности потока импульса
где
тензор вязких напряжении, - коэф. сдвиговой вязкости, Р- давление. Для газов с внутр. степенями свободы содержит также член , где - коэф. "второй", объёмной вязкости, проявляющейся лишь при движениях, в к-рых . Для кинетич. коэффициентов получаются выражения через эфф. сечения столкновений и, следовательно, через константы молекулярных взаимодействий. В бинарной смеси поток вещества состоит из диффуз. потока, пропорционального градиенту концентрации вещества в смеси с коэф. диффузии, и термодиффузионного потока, пропорционального градиенту темп-ры с коэф. термодиффузии, а поток тепла, кроме обычного члена теплопроводности, пропорционального градиенту темп-ры, содержит дополнит. член, пропорциональный градиенту концентрации и описывающий Дюфура эффект. К. ф. даёт выражения для этих кинетич. коэффициентов через эфф. сечения столкновений. Кинетич. коэффициенты для перекрёстных явлений, напр. термодиффузии и эффекта Дюфура, оказываются равными (Онсагера теорема). Эти соотношения являются следствием микро-скопич. обратимости ур-ний движения частиц системы, т. е. инвариантности их относительно обращения времени.
Ур-ние баланса импульса с учётом выражения для плотности потока импульса через градиент скорости даёт Навье-Стокса уравнения, ур-ние баланса энергии с учётом выражения для плотности потока тепла даёт теплопроводности ур-ние, ур-ние баланса числа частиц определ. сорта с учётом выражения для диффуз. потока даёт диффузии уравнение. Такой гидродинамич. подход справедлив, если длина свободного пробега l значительно меньше характерных размеров областей неоднородности.
Газы и плазма. К. ф. позволяет исследовать явления переноса в разреж. газах, когда отношение длины свободного пробега l к характерным размерам задачи L (т. е. Кнудсена число l/L )уже не очень мало и имеет смысл рассматривать поправки порядка l/L (слабо разреж. газы). В этом случае К. ф. объясняет явления температурного скачка и течения газов вблизи твёрдых поверхностей.
Для сильно разреж. газов, когда l/L>1, гидродинамич. ур-ния и обычное ур-ние теплопроводности уже не применимы и для исследования процессов переноса необходимо решать кинетич. ур-ние с определ. граничными условиями на поверхностях, ограничивающих газ. Эти условия выражаются через ф-цию распределения молекул, рассеянных из-за взаимодействия со стенкой. Рассеянный поток частиц может приходить в тепловое равновесие со стенкой, но в реальных случаях это не достигается. Для сильно разреж. газов роль коэф. теплопроводности играют коэф. теплопередачи. Напр., кол-во тепла Q, отнесённое к единице площади параллельных пластинок, между к-рыми находится разреж. газ, равно , где Т 1 и Т 2- теми-ры пластинок, L - расстояние между ними, - коэф. теплопередачи.
Теория явлений переноса в плотных газах и жидкостях значительно сложнее, т. к. для описания неравновесного состояния уже недостаточно одночастичной ф-ции распределения, а нужно учитывать ф-ции рас-
пределения более высокого порядка Частичные ф-ции распределения удовлетворяют цепочке зацепляющихся ур-ний ( Боголюбова уравнений, наз. также цепочкой ББГКИ, т. е. ур-ний Боголюбова-Борна-Грина- Кирквуда-Ивона). С помощью этих ур-ний можно уточнить кинетич. ур-ние для газов ср. плотности и исследовать для них явления переноса.
К. ф. двухкомпонентной плазмы описыпается двумя ф-циями распределения (для электронов , для ионов fi) удовлетворяющими системе двух кинетич. ур-ний. На частицы плазмы действуют силы
где Ze - заряд иона, Е - напряжённость электрич. поля, В- магн. индукция, удовлетворяющие Максвелла уравнениям. Ур-ния Максвелла содержат ср. плотности тока и заряда , определяемые с помощью ф-ций распределения:
Т. о., кинетич. ур-ния и yp-ния Максвелла образуют связанную систему ур-ний, определяющих все неравновесные явления в плазме. Такой подход наз. приближением самосогласованного поля. При этом столкновения между электронами учитываются не явно, а лишь через создаваемое ими самосогласованное поле (см. Кинетические уравнения для плазмы). При учёте столкновений электронов возникает кинетич.. ур-ние, в к-ром эфф. сечение столкновений очень медленно убывает с ростом прицельного расстояния, становятся существенными столкновения с малой передачей импульса, в интеграле столкновений появляется логарифмич. расходимость. Учёт эффектов экранирования позволяет избежать этой трудности.
Конденсированные среды. К. ф. неравновесных процессов в диэлектриках основана на решении кинетич. ур-ния Больцмана для фононов решётки (ур-ние Пайерлса). Взаимодействие между фононами вызвано членами гамильтониана решётки, ангармоническими относительно смещения атомов на положения равновесия. При простейших столкновениях один фонон распадается на два или происходит слияние двух фононов в один, причём сумма их квазиимпульсов либо сохраняется (нормальные процессы столкновений), либо меняется на вектор обратной решётки (процессы переброса). Конечная теплопроводность возникает при учёте процессов переброса. При низких темп-рах, когда длина свободного пробега больше размеров образца L, роль длины свободного пробега играет L. Кинетич. ур-ние для фононов позволяет исследовать теплопроводность и поглощение звука в диэлектриках. Если длина свободного пробега для нормальных процессов значительно меньше длины свободного пробега для процессов переброса, то система фопонов в кристалле при низких темп-pax подобна обычному газу. Нормальные столкновения устанавливают внутр. равновесие в каждом элементе объёма газа, к-рый может двигаться со скоростью V, мало меняющейся на длине свободного пробега для нормальных столкновении. Поэтому можно построить ур-ния гидродинамики фононного газа в диэлектрике. К. ф. м е т а л л о в основана на решении кинетич. ур-ния для электронов, взаимодействующих с колебаниями кристаллич. решётки. Электроны рассеиваются на колебаниях атомов решётки, примесях и дефектах, нарушающих её периодичность, причём возможны как нормальные столкновения, так и процессы переброса. Электрич. сопротивление возникает в результате этих столкновений. К. ф. объясняет термоэле-ктрич., гальваномагн, и термомагн. явления, скин-эффект, циклотронный резонанс в ВЧ-полях и др. кинетич. эффекты в металлах. Для сверхпроводников она объясняет особенности их ВЧ-поведения.
К. <ф. магнитных явлений основана на решении кинетич. ур-ния для магнонов. Она позволяет вычислить динамич. восприимчивости магн. систем в перем. полях, изучить кинетику процессов намагничивания.
К. ф. явлений при прохождении быстрых частиц через вещество основана на решении системы кинетич. ур-ний для быстрых частиц и вторичных частиц, возникающих при столкновениях, напр, для -лучей (фотонов) с учётом разл. процессов в среде (фотоэффекта, комптоновского рассеяния, образования пар). В этом случае К. ф. позволяет вычислить коэф. поглощения и рассеяния быстрых частиц.
Фазовые переходы. К. <ф. фазовых переходов первого рода, т. е. со скачком энтропии, связана с образованием и ростом зародышей новой фазы. Ф-ция распределения зародышей по нх размерам (если зародыши считать макроскопич. образованиями, а процесс роста - медленным) удовлетворяет Фоккера-Планка уравнению:
где а - радиус зародыша, D- "коэф. диффузии зародышей по размерам", А пропорционально мин. работе, к-рую нужно затратить на создание зародыша данного размера. К. ф. фазовых переходов 2-го рода в наиб. простом приближении основана на ур-нии релаксации параметра порядка , характеризующего степень упорядоченности, возникающей при фазовом переходе:
где - постоянный коэф., - термодинамич. потенциал в переменных Т и ( - хим. потенциал), вблизи точки фазового перехода зависящий от . Для этой зависимости используется разложение по степеням и Т-Т с, где Т с - темп-pa фазового перехода. (См. также Кинетика фазовых переходов.)
Явления переноса в жидкостях. Теорию явлений переноса в жидкостях также можно отнести к К. ф., хотя для жидкостей метод кинетич. ур-ний непригоден, но для них возможен более общий подход, основанный также на иерархии времён релаксации. Для жидкости время установления равновесия в макроскопически малых (но содержащих ещё большое число молекул) элементарных объёмах значительно больше, чем время релаксации во всей системе, вследствие чего в малых элементах объёма приближённо устанавливается статистич. равновесие. Поэтому в качестве исходного приближения при решении Лиувилля уравнения можно принять локально равновесное Гиббса распределение с темп-рой Т (x, t), хим. потенциалом и гидродинамич. скоростью F(x, t), соответствующими рассматриваемой точке жидкости. Напр., для однокомпонентной жидкости локально равновесная ф-ция распределения (или статистич. оператор) имеет вид
где
- плотность энергии в системе координат, движущейся вместе с элементом жидкости, Н (х)- плотность энергии в неподвижной системе координат, р (х) - плотность импульса, n(x) - плотность числа частиц, рассматриваемые как фазовые ф-ции, т. е. ф-ции от координат и импульсов всех частиц, напр.
Приближённое решение ур-ния Лиувилля для состояний, близких к статистически равновесному, позволяет вывести ур-ния теплопроводности и Навье-Стокса для жидкости и получить микроскопич. выражения для кинетич. коэф. теплопроводности и вязкости через пространственно-временные корреляц. ф-ции плотностей потоков энергии и импульсов всех частиц системы ( Грина-Кубо формулы). Этот же подход возможен и для смеси жидкостей. Подобное решение ур-ния Лиувилля есть его частное решение, зависящее от времени лишь через параметры , , V(x, t), соответствующие сокращённому гидродинамич. описанию неравновесного состояния системы, к-рое справедливо, когда все гидродинамич. параметры мало меняются на расстояниях порядка длины свободного пробега (для газов) или длины корреляций потоков энергии или импульса (для жидкостей). [В квантовом случае Я (ж), р(x), п(x) - операторы в представлении вторичного квантования.]
К задачам К. ф. относится также вычисление обобщённой восприимчивости, выражающей линейную реакцию физ. системы на включение внеш. поля. Её можно выразить через Грина функции с усреднением по состоянию, к-рое может быть и неравновесным.
В К. ф. исследуют также кинетич. свойства квантовых систем, что требует применения метода матрицы плотности (см., напр., Кинетическое уравнение основное).
Лит.: Гуревич Л. Э., Основы физической кинетики, Л.- М., 1940; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М.- Л., 1946; Ч е п-мен С., К а у л и н г Т.', Математическая теория неоднородных газов, пер. с англ., М., 1960; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; К л и-монтович Ю. Л., Кинетическая теория неидеального газа и неидеальной плазмы, М., 1975; Ферцигер Д ж., К а-п е р Г., Математическая теория процессов переноса в газах, пер. с англ., М., 1976; В а л е с к у Р., Равновесная и неравновесная статистическая механика, пер. с англ., т. 2, М., 1978; Л и ф ш и ц Е. М., Питаевский Л. П., Физическая кинетика, М., 1979. Д. Н. Зубарев.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.