- ФЕРРИТЫ
- ФЕРРИТЫ
-
(от лат. ferrum — железо), в прямом смысле — хим. соединения окиси железа Fe2O3 с окислами др. металлов; в более широком понимании — сложные окислы, содержащие железо и др. элементы. Большинство Ф. являются ферримагнетиками и сочетают ферромагнитные и полупроводниковые или диэлектрич. свойства, благодаря чему они получили широкое применение как магнитные материалы в радиотехнике, радиоэлектронике, вычислит. технике.Рис. 1. Крист. структура ферритов-шпинелей: а — схематич. изображение элементарной ячейки шпинельной структуры (её удобно делить на 8 равных частей — октантов); б — расположение ионов в смежных октантах ячейки: белые кружки — ионы О2- образующие остов, чёрные — ионы металла в октаэдрич. и тетраэдрич. промежутках; в — ион металла в тетраэдрич. промежутке; г — ион металла в октаэдрич. промежутке.В состав Ф. входят анионы кислорода О2-, образующие остов их кристаллич. решётки; в промежутках между ионами кислорода располагаются катионы Fe3+ , имеющие меньший радиус, чем анионы O2-, и катионы Меk+ металлов, к-рые могут иметь разл. ионные радиусы и разные валентности k. В результате косвенного обменного взаимодействия катионов Fe3+ и Меk+ в Ф. возникает ферримагнитное упорядочение с высокими значениями намагниченности и точек Кюри. Различают Ф.-шпинели, Ф.-гранаты, ортоферриты и гексаферриты. Ферриты-шпинели имеют структуру минерала шпинели с общей ф-лой MeOFe2O3, где Me— Ni2+ , Co2+ ,Fe2+ , Mn2+, Mg2+ , Li1+, Cu2+ . Элементарная ячейка Ф.-шпинели представляет собой куб, образуемый 8 молекулами MeOFe2O3 и состоящий из 32 анионов O2-, между к-рыми имеются 64 тетраэдрич. (А) и 32 октаэдрич. (В) позиции, частично заселённые катионами Fe3+ и Ме2+ (рис. 1). В зависимости от того, какие ионы и в каком порядке занимают позиции А и В, различают нормальные шпинели и обращённые шпинели. В обращённых шпинелях половина ионов Fe3+ находится в тетраэдрич. позициях, а в октаэдрич. позициях — 2-я половина ионов Fe3+ и ионы Ме2+ . При этом намагниченность (магн. момент) MA октаэдрич. подрешётки больше тетраэдрической МB, что приводит к возникновению ферримагнетизма.Ферриты-гранаты элементов R3+ (Sm3+, Eu3+ , Gd3+ , Tb3+ Dy3+, Ho3+ , Er3+ , Tm3+, Yb3+, Lu3+ и Y3+ ) имеют кубич. структуру граната с общей ф-лой R3Fe5Ol2. Элементарная ячейка Ф.-гранатов содержит 8 молекул R3Fe5Ol2; в неё входят 96 ионов О2-, 24 иона R3+ и 40 ионов Fe3+ . В Ф.-гранатах имеется три типа позиций, в к-рых размещаются катионы: большая часть ионов Fe3+ занимает тетраэдрические (d), меньшая часть ионов Fe3+ — октаэдрические (а) и ионы R3+ — додекаэдрич. позиции (с). Соотношение величин и направлений намагниченностей катионов, занимающих позиции d, а, с, показано на рис. 2 .Рис. 2. Схематич. изображение величин и направлений векторов намагниченности катионов, образующих магн. подрешётки d, а и с в ферритах-гранатах.Ортоферритами наз. группу Ф. с орторомбической крист. структурой. Их образуют редкоземельные элементы по общей ф-ле RFeO3. Ортоферриты имеют структуру минерала перовскита. При не очень низких темп-рах в ортоферритах упорядочиваются только магн. моменты ионов железа. Ортоферриты явл. антиферромагнетиками и обладают слабым ферромагнетизмом. Только при очень низких темп-рах (порядка неск. К и ниже) в ортоферритах упорядочиваются магн. моменты редкоземельных ионов, и они становятся ферримагнетиками.Ферриты гексагональной структуры (гексаферриты) представляют собой сложные окисные соединения, напр. PbFe12O19, Ba2Zn2Fe12O22 и др. Ячейка гексаферритов построена ив шпинельных блоков, разделённых блоками гексагональной структуры, содержащей ионы Pb2+, Ва2+ или Sr2+ .Нек-рые гексаферриты обладают высокой коэрцитивной силой и применяются для изготовления пост. магнитов. Большинство Ф. со структурой шпинели, феррит-гранат иттрия и нек-рые гексаферриты используются как магнитно-мягкие материалы. Синтез поликрист. Ф. осуществляется по технологии изготовления керамики. Из смеси исходных окислов прессуют изделия нужной формы, к-рые подвергают затем спеканию при темп-рах от 900 до 1500°С на воздухе или в спец. газовых средах. Монокрист. Ф. выращиваются методами Чохральского, Вернейля и др. (см. МОНОКРИСТАЛЛ, КРИСТАЛЛИЗАЦИЯ). Ф. нашли широкое применение в радиотехнике — ферритовые антенны, сердечники радиочастотных контуров; в СВЧ-технике — вентили и циркуляторы, использующие принцип невзаимного распространения эл.-магн. волны в волноводе, заполненном ферродиэлектриком; в вычислительной технике — элементы оперативной памяти; в магнитофонах и видеомагнитофонах — покрытие плёнок и дисков. Ф. применяют также для изготовления небольших постоянных магнитов.
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- ФЕРРИТЫ
-
(лат. ferrum- железо) - общее название сложных окислов, содержащих железо и др. элементы. Большинство Ф. является ферримагнетиками (см. также Антиферромагнетик, Слабый ферромагнетизм )и проявляет полупроводниковые или диэлектрич. свойства (см. Магнитные диэлектрики).
В состав Ф. входят анионы кислорода О 2-, образующие остов их кристаллич. решётки, в промежутках между анионами О 2- располагаются катионы Fe3+ и катионы переходных металлов. Наиб. хорошо изучены свойства Ф.-шпинелей, Ф.-гранатов, ортоферритов и гексаферри-тов, различающихся по своей кристаллографич. и магнитной атомной структуре.
К Ф. также относятся Ф.- г а у с м а н и т ы (Мn2 О 3), л ит и е в ы е Ф. со структурой NaCl, Ф. Са и Ва с орторомбич. структурой.
Ф.-ш п и н е л и обладают кристаллич. структурой шпинели благородной MgAl2O4 и имеют общую ф-лу MeOFe2O3, где Me - двухвалентный металл (Ni, Co, Fe, Мn и др.). К ним относятся также многочисл. смешанные Ф. состава где сумма валентностей Me и Me' равняется 4.
Идеальную кристаллич. решётку шпинели можно рассматривать как одну из кубич. плотных упаковок (рис. 1).
Рис. 1. Кристаллическая структура ферритов-шпинелей: а - схематическое изображение элементарной ячейки шпинельной структуры, разделённой на 8 октантов; б- расположение ионов в смежных октантах ячейки; белые кружки - анионы О 2-, образующие остов решётки, чёр ные - катионы в октаэдрических и тетраэдрических по зициях; в- катион в тетраэдрическом окружении; г- ка тион в октаэдрическом окружении.
Элементарная ячейка представляет собой куб, образуемый 8 молекулами, и состоит из 32 анионов. Вакантные узлы, занимаемые катионами, по структуре ближайшего окружения подразделяются на 64 тетраэдрич. ( А )и 32 октаэдрич. ( В )позиции. Различают н о р м а л ь н ы е, о б р а щ ё н н ы е и с м е ш а н н ы е Ф.-шпинели. В нормальных шпинелях (ZnFe2O4, CdFe2O4) узлы В заняты ионами трёхвалентного металла. В обращённых шпинелях все катионы Me находятся в В -местах, а трёхвалентные (Fe) распределены поровну между А- и B -местами. В смешанных Ф. порядок распределения катионов произволен.
Ф. со структурой нормальной шпинели оказываются антиферромагнитными, а со структурой обращённой шпинели- ферримагнитными. Обменные взаимодействия между катионами осуществляются косвенным образом (см. Косвенное обменное взаимодействие )и, как правило, являются отрицательными. Наиб. сильными обычно являются обменные взаимодействия между катионами, находящимися в позициях с разл. кристаллографич. окружением.
В частично или полностью обращённых шпинелях катионы, находящиеся в узлах А и B, образуют две магнитные подрешётки (строго говоря, ионы Me и Fe3+ в узлах А также образуют две подрешётки, магн. моменты к-рых ориентированы параллельно друг другу); намагниченности подрешёток А и В направлены в противоположные стороны, поэтому результирующая намагниченность обращённых шпинелей определяется магн. моментами двухвалентных ионов.
Ф.- г р а н а т ы имеют общую хим. ф-лу Me3Fe5O12, где Me-трёхвалентный 4f -ион либо Y, Bi, Са и др. Кристал-лич. структура Ф.-гранатов очень сложна и изоморфна структуре природного минерала граната CaAl3(SiO)4. В элементарную ячейку, представляющую собой куб, входят 8 формульных единиц. По структуре ближайшего окружения наряду с тетраэдрич. (d )и октаэдрич. ( а )местами существуют додекаэдрич. (с) места, занимаемые Ме-ионами и окружённые 8 анионами О 2-. Из 40 ионов Fe3+ , находящихся в элемент. ячейке, 24 иона занимают d -места и 16 ионов - а -места. Ниже Кюри точки, к-рая для всех Ф.-гранатов лежит в пределах в них возникает ферримагнетизм. Магн. структура Ф.-гранатов состоит из 20 d- и 12 f -магн. подрешёток. Как и в Ф.-шпинелях, наиб. сильным является косвенное обменное взаимодействие между ионами Fe3 + в а- и d -местах, в значит, степени определяющее значение точки Кюри. В полях до 102 Тл все железные подрешётки можно рассматривать как одну с результирующим магн. моментом, равным разности магн. моментов d -подрешёток. Магн. моменты f -подрешёток ориентированы антипараллельно результирующему магн. моменту d -подрешёток и образуют зонтичную структуру (кроме Ф.-граната Gd) (см. рис. 4 к ст. Ферримагнетизм). Все Ф.-гранаты, содержащие тяжёлые редкоземельные ионы, имеют точку магн. компенсации, по достижении к-рой результирующая намагниченность равна нулю. В них наблюдаются спонтанные и индуцированные внеш. магн. полем спин-переориентационные переходы (см. Магнитный фазовый переход).
О р т о ф е р р и т ы обладают кристаллич. структурой пе-ровскита СаТiO3. Среди большого ряда ортоферритов выделяются редкоземельные ортоферриты, ортохромиты и т. <д. состава RMeO3, где R - Tb, Dy и т. <д., Me - Fe, Cr, Аl. Элементарная ячейка ортоферрита включает в себя 4 формульные единицы (рис. 2). При не очень низких темп-pax в ортоферритах упорядочиваются только магн. моменты ионов Fe и они являются антиферромагнетиками со слабым ферромагнетизмом. При очень низких (порядка неск. К) темп-pax ортоферриты становятся ферримагнети-ками. В них наблюдаются спонтанные ориентаиионные фазовые переходы (изменение ориентации оси антиферромагнетизма), существует точка магн. компенсации слабых ферромагн. моментов и т. <д.
Г е к с а ф е р р и т а м и наз. соединения типа BaFe12O19, Ba2Me2Fe12O22, BaMe2Fe16O27 и др., где ионы Ва могут замещаться ионами Са, Rb, Sr. Элементарная ячейка гексаферритов состоит из шпинельных блоков, не содержащих Ва, разделённых блоками гексагональной структуры, имеющими эти ионы. В гексаферритах наблюдаются разл. типы магн. атомной структуры: существуют одноосные и легкоплоскостные гексаферриты, а также гексаферриты, обладающие конич. поверхностью лёгкого намагничивания.
Рис. 2. Элементарная ячейка редкоземельных орто ферритов: белые кружки-анионы О 2-, чёрные - катионы железа, заштрихованные-катионы редко земельных металлов. Показана структура бли жайшего окружения катионов железа.
Ф. в качестве магнитных материалов широко применяются в технике, особенно в радиотехнике и радиоэлектронике - в антеннах, сердечниках радиочастотных контуров, в СВЧ-технике (вентили и циркуляторы). Большинство Ф.-шпинелей, Ф.-гранат иттрия (железо-иттриевый гранат, ЖИГ) и нек-рые гексаферриты используются как магнитно-мягкие материалы. Отд. гексаферриты обладают значит. коэрцитивной силой и применяются для изготовления пост. магнитов.
Многие Ф.-гранаты обладают рядом уникальных свойств; напр., в ЖИГ ширина линии магнитного резонанса составляет величину порядка 10-2 Тл, так что добротность резонатора может достигать неск. тысяч. Эпитакси-альные плёнки Ф.-гранатов являются одним из лучших материалов для устройств с цилиндрическими магнитными доменами; нек-рые из них прозрачны и имеют большой угол фарадеевского вращения (см. Магнитооптика). При низких темп-pax Ф.-гранаты обладают большой магнитной анизотропией, обусловленной редкоземельными ионами, и значит. магнитострикцией; в них удаётся возбудить бегущие спиновые волны и наблюдать рассеяние света на спиновых волнах.
Лит.: Смит Я., Вейн Х., Ферриты, пер. с англ., М., 1962; Крупичка С, Физика ферритов и родственных им магнитных окислов, пер. с нем., т. 1, М., 1976; см. также лит. при ст. Антиферромагнетизм, Ферримагнетизм. А. К. Звездин, С. Н. Уточкин.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.