- МАГНЕТОН
- МАГНЕТОН
-
единица магнитного момента, принятая в ат. и яд. физике, физике тв. тела, элем. ч-ц и т. д. Магн. момент ат. систем, обусловленный в осн. орбитальным движением и спином эл-нов, измеряется в магнетонах Бора:(е — абс. величина электрич. заряда, m — масса эл-на). В яд. физике магн. моменты измеряются в ядерных магнетонах, отличающихся от (mБ заменой массы эл-на m на массу протона М:mя=eћ/2Mc»5,051•10-24 эрг/Гс. (2)Физ. смысл величины mБ легко понять из полуклассич. рассмотрения движения эл-на по круговой орбите радиуса r со скоростью v. Такая система аналогична витку с током, сила I к-рого равна заряду, делённому на период вращения: I=ev/2pr. Согласно классич. электродинамике, магнитный момент витка с током, охватывающего площадь S, равен в СГС системе единиц (Гауссовой): m= IS/с=evr/2c, или m=еМlz/2mс, где Mlz=mvr — орбит. момент кол-ва движения эл-на. Если учесть, что в квант. механике проекция орбит. момента Mlz кратна постоянной Планка, Mlz=?ml?ћ, где ml=0, ±1, ±2, ... , то получится выражение:Т. о., магн. момент эл-на, находящегося в состоянии с проекцией орбитального момента Mlz, кратен магнетону Бора, к-рый в данном случае играет роль элем. магн. момента — «кванта» магн. момента эл-на.Помимо орбит. момента кол-ва движения, эл-н обладает собств. механич. моментом — спином s, проекция к-рого |ms| = 1/2 (в единицах ћ). Спиновый магн. момент ms=2mБ|,ms|, т. е. в 2 раза больше величины, к-рую следовало ожидать на основании ф-лы (3), но т. к. |ms|=1/2, то ms эл-на также равен магнетону Бора: ms=mБ. Этот факт непосредственно вытекает из релятив. квант. теории эл-на, в основе к-рой лежит Дирака уравнение.Ядерный М. имеет аналогичный смысл: это магн. момент, создаваемый движением протона с проекцией орбит. момента |mlz|=1. Однако собств. магн. моменты яд. ч-ц — протона и нейтрона, обладающих, как и эл-н, спином 1/2, значительно отличаются от тех значений, к-рые они должны бы иметь по теории Дирака. Аномальные магн. моменты этих ч-ц, а также др. адронов обусловлены их сильным взаимодействием.
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- МАГНЕТОН
-
- единица измерения магн. момента, к-рую используют при изучении магн. свойств атомов и атомных ядер.
Согласно классич. электродинамике" движение заряж. частицы (с абс. значением заряда е и массой т )со скоростью по круговой орбите радиуса r можно рассматривать как элементарный виток с круговым электрич. током, сила к-рого I равна заряду, делённому на период вращения , т. е. . Магн. момент такого витка с током равен (в системе СГС) , где - площадь, охватываемая витком, и, следовательно, , где lz = mvr - проекция орбитального момента I частицы на ось z, перпендикулярную плоскости витка (т. е. плоскости движения частицы). Если движение частицы подчиняется квантовым законам, то lz квантуется: , где т, может принимать любые целые значения в интервале от - l до +l(ml = 0, 1, 2, . . .,. l), и , т. е. кратен величине , имеющей размерность магн. момента и играющей в данном случае роль элементарного магн. момента - "кванта" магн. момента частицы.
В системах атомной физики (атомах, молекулах и т. п.), где существ. роль играют электроны, единицей измерения магн. момента системы является магнетон Бора:
где т е - масса электрона. В ядерной физике используется ядерный магнетон:
где mp - масса протона. Т. о., магн. момент атомной или ядерной системы характеризуется соответствующим М. Поскольку магн. момент системы (молекулы, атома, атомного ядра, элементарной частицы) определяет величину энергии взаимодействия системы с внешним магн. полем ( , где U - напряжённость поля), а также энергию магн. взаимодействия частиц друг с другом, очевидно, что магн. взаимодействия в ядерных системах (ядерный магнетизм) примерно на 4 порядка слабее, чем в атомных системах.
Кроме механич. момента, обусловленного движением частицы в пространстве (орбитального момента), каждая элементарная частица (электрон, протон, нейтрон и др.), входящая в рассматриваемую систему (атом, ядро и т. д.), может обладать также собственным механич. моментом - спином и связанным с ним собственным (спиновым) магн. моментом.
Отношение магн. момента к механическому наз. гиромагн. отношением. Для орбит. момента, как указано выше, это отношение равно . В случае спинового механич. момента гиромагн. отношение оказывается другим. Напр., из Дирака уравнения для электрона в нерелятивистском приближении во внешнем эл.-магн. поле (см. также Паули уравнение )следует, что для собств. магн. момента и спина электрона гиромагн. отношение равно е/тс, т. е. вдвое больше, чем для орбитального движения электрона. Но поскольку спин электрона равен , собств. магн. момент электрона оказывается равным по абсолютной величине
Для более точного определения собств. магн. момента электрона m е надо рассчитать его энергию взаимодействия с внешним магн. полем, точнее, собств. энергию электрона в этом поле. При этом, согласно квантовой электродинамике, следует учитывать также радиационные поправка, т. е. эффекты взаимодействия электрона с эл.-магн. вакуумом (с нулевыми колебаниями эл.-магн. поля). С учётом этих поправок собств. магн. момент электрона по абс. величине будет равен:
, где аномальный магнитный момент обусловлен радиац. поправками и очень мал по сравнению с : во втором порядке разложения по теории возмущений, где малым параметром является постоянная тонкой структуры
Для определения собств. магн. моментов адронов, напр. нуклонов, кроме учёта вкладов эл.-магн. взаимодействия необходимо учитывать гораздо большие по величине (и, следовательно, более важные) вклады сильного взаимодействия частиц, определяющих структуру нуклонов. Именно вследствие сложной структуры нуклонов значения собств. магн. моментов протона и нейтрона значительно отличаются от ядерного М.
В. Д. Kукин.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.