ВЫБОРА АКСИОМА

ВЫБОРА АКСИОМА
ВЫБОРА АКСИОМА
    ВЫБОРА АКСИОМА — ем. Множеств теория.

Новая философская энциклопедия: В 4 тт. М.: Мысль. . 2001.


.

Игры ⚽ Поможем написать реферат

Смотреть что такое "ВЫБОРА АКСИОМА" в других словарях:

  • ВЫБОРА АКСИОМА — одна из аксиом теории множеств, гласящая: для всякого семейства Fнепустых множеств существует функция f такая, что для всякого множества Sиз Fимеет место (при этом f наз. функцией выбора на F). Для конечных семейств FВ. а. выводима из остальных… …   Математическая энциклопедия

  • АКСИОМА ВЫБОРА —     АКСИОМА ВЫБОРА см. Множеств теория. Новая философская энциклопедия: В 4 тт. М.: Мысль. Под редакцией В. С. Стёпина. 2001 …   Философская энциклопедия

  • Аксиома выбора — Аксиомой выбора называется следующее высказывание теории множеств: «Для каждого семейства непустых непересекающихся множеств существует (по меньшей мере одно) множество , которое имеет только один общий элемент c каждым из множеств данного… …   Википедия

  • Аксиома — В Викисловаре есть статья «аксиома» Аксиома (др. греч …   Википедия

  • аксиома выбора —         АКСИОМА ВЫБОРА (от греч. axioma принятое положение) один из важнейших теоретико множественных принципов, введенный в 1904 Э. Цермело и утверждающий, что «для всякого семейства непустых множеств существует функция выбора, выбирающая из… …   Энциклопедия эпистемологии и философии науки

  • АКСИОМА — (от греч. axioma значимое, принятое положение) исходное, принимаемое без доказательства положение к. л. теории, лежащее в основе доказательств др. ее положений. Долгое время термин «А.» понимался не просто как отправной пункт доказательств, но и… …   Философская энциклопедия

  • Аксиома параллельности Евклида — Пересечения прямых (анимация) Аксиома параллельности Евклида, или пятый постулат  одна из аксиом, лежащ …   Википедия

  • ЦЕРМЕЛО АКСИОМА — выбора аксиома для произвольного (не обязательно дизъюнктного) семейства множеств. Эту аксиому Э. Цермело сформулировал в 1904 в виде следующего утверждения, названного им принципом выбора [1]: для любого семейства множества . можно выбрать из… …   Математическая энциклопедия

  • аксиома — (от греч. axioma значимое, принятое положение) исходное, принимаемое без доказательства положение к. л. теории, лежащее в основе доказательств других ее положений. Долгое время термин А. понимался не просто как отправной пункт доказательств, но и …   Словарь терминов логики

  • БЕСКОНЕЧНОСТИ АКСИОМА — аксиома формальной или содержательной теории, обеспечивающая на . личие бесконечного количества объектов в рассматриваемой теории. Так, Б …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»