- АКСИОМ СХЕМА
- единый способ задания аксиом, обладающих одной и той же синтаксич. структурой. Конкретная А. с. обычно реализуется при помощи фиксирующего ее синтаксич. структуру выражения (чаще всего не принадлежащего языку, в к-ром записываются аксиомы) и правил, позволяющих, исходя из выражения получить произвольную аксиому данной структуры.
В контекстах с заранее сформулированными или однозначно подразумеваемыми правилами порождения аксиом с помощью выражения А. с. обычно наз. самовыражение Так, напр., говорят о А. с. пропозиционального исчисления Р, подразумевая под этим совокупность аксиом вида где Аи В - произвольные формулы исчисления Р.
Примером схемы нелогических аксиом является следующий вариант схемы индукции в традиционных аксиоматизациях арифметики:
здесь предполагаются не принадлежащими алфавиту языка рассматриваемой формализации арифметики и интерпретируются, соответственно, как произвольная формула и произвольная переменная этой формализации.
Применение А. с. обычно позволяет обойтись без правила подстановки при построении формальных теорий. Так, напр., во всяком достаточно сильном пропозициональном исчислении с двумя правилами вывода - правилом подстановки и правилом заключения - оказывается возможным ограничиться при выводах подстановками только в аксиомы, что позволяет эквивалентным образом модифицировать такое исчисление, заменив каждую аксиому соответствующей А. с. и удалив правило подстановки из числа действующих в нем правил вывода.
Лит.:[1] К лини С. К., Введение в метаматематику, пер. с англ., М., 1957; [2] Чёрч А., Введение в математическую логику, т. 1, пер. с англ., М., 1960. Ф. А. Кабаков.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.