ФУРЬЕ - БЕССЕЛЯ ИНТЕГРАЛ

ФУРЬЕ - БЕССЕЛЯ ИНТЕГРАЛ

интеграл Ганкеля,- аналог Фурье интеграла для Бесселя функций, имеющий вид

Формула (*) может быть получена из Фурье-Бесселя ряда для интервала (0, l)переходом к пределу при Г. Ганкель (Н. Hankel, 1875) установил теорему: если функция f(x)кусочно непрерывная и имеет ограниченную вариацию на любом интервале 0<х<l, интеграл


сходится, то формула (*) справедлива при v >-1/2 во всех точках непрерывности f(х), В точках разрыва х 0, правая часть формулы (*) равна [f(x0 - 0)+f(x0 + 0)]/2, при x0 = 0 она дает f(0+)/2. Аналоги Ф. - Б. и. (*) для цилиндрич. функций Zv (х)других типов также справедливы, но пределы интегралов должны быть соответственно изменены.

Е. Д. Соломенцее.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно решить контрольную?

Смотреть что такое "ФУРЬЕ - БЕССЕЛЯ ИНТЕГРАЛ" в других словарях:

  • ФУРЬЕ - БЕССЕЛЯ РЯД — разложение функции f(x)в ряд где f(x) заданная в интервале (0, а)функция, Jv (х) Бесселя функция порядка положительные нули функции Jv(x), расположенные в порядке возрастания; коэффициенты ряда с т имеют следующие значения Если f(x) кусочно… …   Математическая энциклопедия

  • БЕССЕЛЯ ФУНКЦИИ — цилиндрические функции1 го рода. Б. ф. .индекса рможет быть определена рядом сходящемся на всей плоскости. Б. ф. индекса рявляется решением соответствующего Бесселя уравнения. При действительных положительных значениях аргумента и индекса (… …   Математическая энциклопедия

  • ФУРЬЕ РЯД — функции f(х)по ортонормированной на промежутке ( а, b )системе функций ряд коэффициенты к рого определяются по формулам и наз. коэффициентами Фурье функции f. О функции f в общем случае предполагается, что она интегрируема с квадратом на ( а, b) …   Математическая энциклопедия

  • Фурье преобразование — Преобразование Фурье  операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие … …   Википедия

  • Преобразование Фурье — Преобразование Фурье  операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие … …   Википедия

  • ВЕСОВОЕ ПРОСТРАНСТВО — весовой класс, пространство с весом, пространство функций, имеющих конечную норму (или полунорму) с нек рым функциональным множителем весом. При этом норма (полунорма) функции наз. в этом случае весовой нормой (полунормой), х вес наз. также… …   Математическая энциклопедия

  • Преобразование Лапласа — Преобразование Лапласа  интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются… …   Википедия

  • Лапласа преобразование — Преобразование Лапласа интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией действительного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и …   Википедия

  • Обратное преобразование Лапласа — Преобразование Лапласа интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией действительного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и …   Википедия

  • Преобразование Радона — интегральное преобразование функции многих переменных, родственное преобразованию Фурье. Впервые введено в работе австрийского математика Иоганна Радона 1917 го года[1]. Важнейшее свойство преобразования Радона обратимость, то есть возможность… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»