ФУРЬЕ ПРЕОБРАЗОВАНИЕ

ФУРЬЕ ПРЕОБРАЗОВАНИЕ

одно из интегральных преобразований,- линейный оператор F, действующий в пространстве, элементами к-рого являются функции f(х)от пдействительных переменных. Минимальной областью определения Fсчитается совокупность бесконечно дифференцируемых финитных функций j. Для таких функций

В нек-ром смысле наиболее естественной областью определения Fявляется совокупность Sбесконечно дифференцируемых функций исчезающих на бесконечности вместо со своими производными быстрее любой степени | х|. Формула (1) сохраняется для и при этом Более того, Fосуществляет изоморфизм Sна себя, обратное отображение F-1 -обращение Ф. п., обратное преобразование Фурье, -задается формулой:

Формула (1) еще действует в пространстве суммируемых функций. Дальнейшее расширение области определения оператора Fтребует обобщения формулы (1). В классич. анализе такие обобщения строятся для локально суммируемых функций с теми или иными ограничениями на их поведение при (см. Фурье интеграл). В теории обобщенных функций определение оператора Fосвобождено от многих требований классич. анализа.
Основные задачи, связанные с изучением Ф. п. F:исследование области определения Ф оператора . и области его значений свойства отображения (в частности, условия существования обратного оператора F-l и его выражение). Формула обращения Ф. п. весьма проста:
F-l[g(x)]=F [g(-x)].

Под действием Ф. п. линейные операторы в исходном пространстве, инвариантные относительно сдвига, переходят в пространстве образов в операторы умножения (при нек-рых условиях). В частности, свертка функций f и gпереходит в произведение функций Ff и Fg:

дифференцирование порождает умножение на независимую переменную:

В пространствах оператор Fопределен формулой (1) на множестве и является ограниченным оператором из в

(неравенство Хаусдорфа - Юнга). По непрерывности Fдопускает продолжение на все пространство к-рое (для дается формулой

где сходимость понимается по норме пространства Если образ пространства Lp под действием оператора Fне совпадает с Lq, т. е. вложение строгое при (случай р = 2 см. в статье Планшереля теорема). Обратный оператор F-l определен на FLp формулой

Задача о распространении Ф. п. на возможно широкий класс-функций постоянно возникает в анализе и его приложениях. См.. напр., Фурье преобразование обобщенной функции.

Лит.:[1] Титчмарш Е., Введение в теорию интегралов Фурье, пер. с англ., М.- Л., 1948; [2] 3игмунд А., Тригонометрические ряды, пер. с англ., т. 2, М., 1965; [3] Стейн И., Вейс Г., Введение в гармонический анализ на евклидовых пространствах, пер. с англ., М., 1974.
П. И. Лизоркин.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "ФУРЬЕ ПРЕОБРАЗОВАНИЕ" в других словарях:

  • Фурье преобразование — Преобразование Фурье  операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие … …   Википедия

  • ФУРЬЕ-ПРЕОБРАЗОВАНИЕ — интегральное преобразование, действующее в пространстве ф ций п действительных переменных: Для суммируемых во всём пространстве Rn ф ций Ф L1(Rn )интеграл (*) корректно определяет нек рую ф цию F[j ] ( х) =y( х) фурье образ ф ции j. Обратное… …   Физическая энциклопедия

  • Фурье преобразование — (данной функции)         функция, выражающаяся через данную функцию f (x) формулой:                   Если функция f (x) чётная, то её ф. п. равно                  (косинус преобразование), а если f (x) нечётная функция, то         … …   Большая советская энциклопедия

  • ФУРЬЕ ПРЕОБРАЗОВАНИЕ — обобщенной функции расширение операции преобразования Фурье с основных функций на обобщенные функции. Пусть К пространство основных функций, на к ром определена операция преобразования Фурье F, причем F изоморфизм Кна пространство основных… …   Математическая энциклопедия

  • ФУРЬЕ ПРЕОБРАЗОВАНИЕ ДИСКРЕТНОЕ — преобразование, используемое для гармонич. анализа функций, заданных на дискретном множестве точек. Если на множестве точек функция задана своими значениями Т> 0 период функции, то Ф. п. д. вектора х= (х 0, x1, ..., xN 1) есть вектор где F… …   Математическая энциклопедия

  • Преобразование Фурье — Преобразование Фурье  операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие … …   Википедия

  • Преобразование Радона — интегральное преобразование функции многих переменных, родственное преобразованию Фурье. Впервые введено в работе австрийского математика Иоганна Радона 1917 го года[1]. Важнейшее свойство преобразования Радона обратимость, то есть возможность… …   Википедия

  • ФУРЬЕ-ОПТИКА — раздел оптики, в к ром преобразование световых полей оптич. системами исследуется с помощью фурье анализа (спектрального разложения) и теории линейной фильтрации. Начало использования в оптике идей спектрального разложения связано с именами Дж.… …   Физическая энциклопедия

  • ФУРЬЕ-СПЕКТРОМЕТР — спектральный прибор, в к ром искомый спектр получают в два приёма: сначала регистрируется интерферограмма исследуемого излучения, а затем через её фуръе преобразование вычисляют искомый спектр. Совокупность спектральных методов, осуществляемых с… …   Физическая энциклопедия

  • Преобразование Гегенбауэра — Преобразование Гегенбауэра  интегральное преобразование функции : где   многочлены Гегенбауэра. Если функция разлагается в обобщенный ряд Фурье по многочленам Гегенбауэра, то им …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»