СИММЕТРИКА

СИММЕТРИКА

на множестве X - неотрицательная действительная функция d, определенная на множестве пар всех элементов множества Xи удовлетворяющая следующим аксиомам:

1) d(x, y)=0 в том и только в том случае, если х=у;

2) d(x, y) = d(y, x )при любых

В отличие от метрики и псевдометрики С. может не удовлетворять аксиоме треугольника. По симметрике dна множестве Xопределяется топология на X:множество замкнуто (относительно симметрики d)в том и только в том случае, если d(x, А)>0 для каждого . При этом


Замыкание множества Ав так определенном топологич. пространстве содержит множество всех тех точек , для к-рых d(x, А)=0,но может этим множеством не исчерпываться. Соответственно, e-шары вокруг точек множества Xмогут иметь пустую внутренность. Топологич. пространство наз. с и м м е т р и з у е м ы м, если топология его порождается по указанному правилу нек-рой С. Класс симметризуемых пространств гораздо шире класса метризуемых пространств:симметризуемое пространство может не быть ни паракомпакткым, ни нормальным, ни хаусдорфовым. Кроме того, симметризуемое пространство может не удовлетворять первой аксиоме счетности.

Но каждое симметризуемое пространство Xсеквенциально, т. е. его топология определяется сходящимися последовательностями по правилу: множество Азамкнуто в том и только в том случае, если предел каждой сходящейся в Xпоследовательности точек множества Апринадлежит А . Для бикомпактных хаусдорфовых пространств симметризуемость равносильна метризуемости.

Лит.:[1] А р х а н г е л ь с к и й А. В., П о н о м ар е в В. И., Основы общей топологии в задачах и упражнениях, М., 1974; [2] Н е д е в С. И., "Тр. Моск. матем. об-ва", 1971, т. 24, с. 201 - 36. А. В. Архангельский.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "СИММЕТРИКА" в других словарях:

  • МЕТРИКА — расстояние на множестве X, определенная на декартовом произведении функция р с неотрицательными действительными значениями, удовлетворяющая при. любых условиям: 1) тогда и только тогда, когда (аксиома тождества); 2) (аксиома треугольника); 3)… …   Математическая энциклопедия

  • МЕТРИЧЕСКОЕ ПРОСТРАНСТВО — множество Xвместе с нек рой метрикойr на ном. Теоретико множественный подход к изучению фигур (пространств) основан на исследовании взаимного расположения составляющих их элементарных частей. Одной из фундаментальных характеристик взаимного… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»