КООПЕРАТИВНАЯ ИГРА

КООПЕРАТИВНАЯ ИГРА

- нестратегическая игра (см. Игр теория), задаваемая тройкой (I, u, H), где I - множество (обычно конечное), элементы к-рого наз. игроками, а подмножества - коалициям и, v- вещественная функция, определенная на множестве коалиций и называемая характеристической функцией игры, Н- некоторое подмножество векторов Х I (компоненты х i к-рых соответствуют игрокам iиз I), называемых дележам и. К. и. впервые были введены Дж. Нейманом (J. Neumann, 1929) как аппарат кооперативной теории (бескоалиционных) игр.

В классической теории К. и. принимается:

На множестве Нвводится бинарное отношение доминирования (предпочтения) дележей по коалиции

Если для нек-рого то полагают

Относительно этого отношения доминирования формулируются понятия оптимальности дележей.

Значительная часть содержания теории К. и. состоит в разработке понятий оптимальности, в доказательствах их реализуемости для различных частных классов К. и. и фактическом нахождении таких реализаций. К числу принципов оптимальности, разрабатываемых применительно к К. п., относятся: двойная (т. е. внешняя и внутренняя) устойчивость, реализуемая в форме решений по Нейману - Моргенштерну (Н-М-решения); недоминируемость дележей (см. Ядра в теории игр); устойчивость относительно угроз; устойчивость в смысле минимизации наибольшей неудовлетворенности (см. Устойчивость в теории игр), справедливость (см. Щепли вектор )и др.

Введение на классе К. и. алгебраич. операций приводит к исчислениям К. и. и к исследованию взаимосвязей между этими операциями и различными принципами оптимальности. Специальному изучению подвергались различные частные классы К. и., описанные ниже.

Простая игра - К. и., в к-рой характеристич. функция vпринимает ровно два значения (обычно 0 и 1); при этом коалиции К, на к-рых достигается максимальное значение v(K), наз. выигрывающими. Частным случаем простых игр является взвешенная мажоритарная игра, в к-рой коалиция Кявляется выигрывающей, если >где - некоторые заданные числа.

Сбалансированная игра - К. и., для характеристической функции которой

если семейство коалиций и числа таковы,

что

где cK(i)= 1, если и 0 в противном случае.

Сбалансированные игры и только они имеют непустое с-ядро.

Выпуклая игра - К. п., для характеристич. функции к-рой при К,

В выпуклой игре с-ядро непусто и совпадает с единственным Н - М-решением. Если К. п. строго выпуклая (т. <е. неравенство (*) строгое), то вектор Шегога является центром тяжести с-ядра.

Игра с квотой - К. и. с характеристич. функцией v, для к-рой существует такой вектор , что и для любых игроков имеет место u({i, j})= wi+wj.

Игра рынка - К. и., порожденная рынком, к-рый понимается как система

где I - множество участников рынка (с ттоварами), - начальный набор товаров г-го участника, и i( х i)- функция полезности г-го участника, определенная на . На основе этого рынка строится К. и., в к-рой

а характеристич. функция определяется равенством

Теория классич. К. и. подвергалась обобщениям в различных направлениях (см. также Неатомическая игра).

Игры без побочных платежей - нестратегич. игры, задаваемые тройкой (I, u, Н), где v(в отличие от классических К. и.) - функция, к-рая каждой коалиции Кставит в соответствие множество v(K)векторов Х I, удовлетворяющее условиям: 1) u(K)замкнуто и выпукло; 2) если xI Оu(K)и yi<xi(iОK), то 3) если то

4) для всех 5) тогда и только тогда, когда для нек-рого

Доминирование в игре без побочных платежей определяется следующим образом: если существует такая непустая коалиция что

Игра в форме функции разбиения- нестратегическая игра, задаваемая множеством игроков I и функцией v, к-рая каждому разбиению =( Р 1, . . ., Р п )множества I ставит в соответствие вектор . Максимальный выигрыш, к-рый может гарантировать себе коалиция К, определяется формулой Дележ в игре в форме функции разбиения определяется как вектор х р удовлетворяющий условиям: =для нек-рого. Дележ xI доминирует дележ у I по коалиции К, если: xi> у i(); существует такое , что

и

Лит.:[1] Нейман Дж., Моргенштерн О., Теория игр и экономическое поведение, пер. с англ.,М., 1970; [2] Воробьев Н. Н., "Успехи матем. наук", 1970, т. 25, № 2, с. 81-140; [3] Розенмюллер И., Кооперативные игры и рынки, пер. с англ., М., 1974.

Н. Н. Воробьев, А. И. Соболев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "КООПЕРАТИВНАЯ ИГРА" в других словарях:

  • Кооперативная игра — Splitscreen в Half Life Decay Это статья о режиме сетевых игр. О термине теории игр см. Кооперативная игра (математика) …   Википедия

  • Кооперативная игра (математика) — Это статья о термине теории игр. О режиме сетевых игр см. Кооперативная игра Теория игр занимается изучением конфликтов, то есть ситуаций, в которых группе людей необходимо выработать какое либо решение, касающееся их всех. Некооперативная теория …   Википедия

  • Носитель (кооперативная игра) — У этого термина существуют и другие значения, см. Носитель. Связать? …   Википедия

  • Игра «Ястребы и голуби» — (англ. Hawks and Doves) – одна из простейших моделей теории игр, описывающая конкурентные отношения в некоторой популяции животных и выработку эволюционно стабильной стратегии. Правила игры Представим себе популяцию животных, в которой… …   Википедия

  • Игра РП-ПП — Игра «распределить потери, присвоить прибыли»  (англ. CC PP Game)  понятие, разработанное экологом Гарретом Гардином (Garrett Hardin) для описания игры (в смысле теории игр), которая часто происходит в сфере размещения ресурсов[1] …   Википедия

  • Игра с полной информацией — Оноре Домье, Шахматисты Игра с полной информацией термин теории игр, обозначающий логическую игру, в которой для соперников отсу …   Википедия

  • Игра с нулевой суммой — Запрос «Zero sum» перенаправляется сюда. Cм. также другие значения. Антагонистическая игра (игра с нулевой суммой, англ. zero sum) термин теории игр. Антагонистической игрой называется некооперативная игра, в которой участвуют два игрока,… …   Википедия

  • НЕАТОМИЧЕСКАЯ ИГРА — игра, в к рой на множестве всех игроков I задана s алгебра подмножеств и на существует такая неатомическая мера, что множества игроков , имеющие нулевую меру, не оказывают влияния на исход игры. Н. и. служат моделями ситуаций, в к рых имеются… …   Математическая энциклопедия

  • Многопользовательская игра — Многопользовательская игра  тип компьютерных игр, при котором одновременно играет несколько человек. Содержание 1 История 2 Классификация 2.1 По технической реализации …   Википедия

  • Некооперативная игра — термин теории игр. Некооперативной игрой называется математическая модель взаимодействия нескольких сторон (игроков), в процессе которого они не могут формировать коалиции и координировать свои действия. Содержание 1 Некооперативная игра в… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»