- ИНТЕГРО-СТЕПЕННОЙ РЯД
- ряд, содержащий степени переменной функции под знаком интеграла. Пусть K(s, t1, ..., tk) - функция непрерывная по совокупности переменных в кубе [a, b]k+1 и пусть U(s)- произвольная непрерывная на [ а, b]функция. Выражение
где a0, a1 ..., ak- неотрицательные целые числа и a0+a1+. . .+ak= т, наз. интегро-степенным членом степени тотносительно U. Два интегростепенных члена степени тпринадлежат к одному типу, если они отличаются лишь своими ядрами К. Сумма конечного числа интегро-степенных членов степени т, принадлежащих различным типам, наз. интегростепенной формой степени тотносительно
функции Uи обозначается Пусть- интегро-степенная форма, в к-рой все ядра Кзаменены на | К|, пусть тогда Выражение
наз. интегро-степенным рядом.
Если сходится числовой ряд то И.-с. р. наз. регулярно сходящимся. В этом случае И.-с. р. сходится абсолютно и равномерно и сумма его непрерывна на [ а, b].
Аналогично вводится И.-с. р. от нескольких функциональных аргументов, а также И.-с. р., в к-рых вместо [а, b]фигурирует нек-рое замкнутое ограниченное множество конечномерного евклидова пространства. И.-с. р.- частный случай более общего понятия абстрактных степенных рядов.
Лит.:[1] Ляпунов А. М., О фигурах равновесия, мало отличающихся от эллипсоидов вращающейся однородной массы жидкости. Собр. соч., т. 4, М., 1959; [2] Schmidt E., "Math. Ann.", 1908, Bd 65, S. 370-99; [3] Вайнберг М. М., Треногий В. А., Теория ветвления решений нелинейных уравнений, М., 1969.
В. А. Треногий.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.