Знакочередующийся ряд — Ряд называется знакочередующимся, если его члены попеременно принимают значения противоположных знаков, т. е.: Признак Лейбница Основная статья: Теорема Лейбница о сходимости знакочередующихся рядов Признак Лейбница признак… … Википедия
Знакочередующийся ряд — бесконечный ряд, члены которого попеременно положительны и отрицательны: u1 u2 + u3 u4 + … + ( 1) n 1 un +...; uk > 0. Если члены З. р. монотонно убывают (un+1 < un) и стремятся к нулю (lim un = 0), то ряд… … Большая советская энциклопедия
Ряд Лейбница — знакочередующийся ряд, названный именем исследовавшего его немецкого математика Лейбница: Как доказал Лейбниц, сумма этого ряда равна … Википедия
Ряд (математич.) — Ряд, бесконечная сумма, например вида u1 + u2 + u3 +... + un +... или, короче, . (1) Одним из простейших примеров Р., встречающихся уже в элементарной математике, является сумма бесконечно убывающей геометрической прогрессии 1 + q + q 2 +... + q… … Большая советская энциклопедия
Ряд — I бесконечная сумма, например вида u1 + u2 + u3 +... + un +... или, короче, Одним из простейших примеров Р., встречающихся уже в элементарной математике, является сумма бесконечно убывающей… … Большая советская энциклопедия
ЛЕЙБНИЦА РЯД — знакочередующийся ряд сходящийся к Рассмотрен Г. Лейбницем (G. Leibniz, 1673 74). В. И. Битюцков … Математическая энциклопедия
1 − 2 + 3 − 4 + … — Первые 15000 частичных сумм ряда 0 + 1 − 2 + 3 − 4 + … В математике, 1 − 2 + 3 − 4 + … это числовой ряд, слагаемые которого по модулю представляют собой последовательные натуральные … Википедия
Теорема Лейбница о сходимости знакочередующихся рядов — У этого термина существуют и другие значения, см. Теорема Лейбница. Теорема Лейбница (признак Лейбница) теорема об условной сходимости знакочередующихся рядов, сформулированная немецким математиком Лейбницем. Содержание 1 Формулировка 2 Следствие … Википедия
Признак Лейбница — Теорема Лейбница (признак Лейбница) теорема о сходимости знакочередующихся рядов, сформулированная немецким математиком Лейбницем. Формулировка Теорема формулируется следующим образом. Знакочередующийся ряд сходится, если выполняются оба условия … Википедия