ДИНИ - ЛИПШИЦА ПРИЗНАК


ДИНИ - ЛИПШИЦА ПРИЗНАК

если непрерывная 2p-периодич. функция f(x)удовлетворяет условию

где w(d, f) - модуль непрерывности функции f(x), то ее ряд Фурье равномерно сходится к ней на всей числовой оси. Д.- Л. п. доказан У. Дини |1], а в частном случае, когда w(d, f)=O(da),при каком-либо

он установлен Р. Липшицем [2]. Утверждение Д.- Л. п. окончательно в следующем смысле. Если со (d) - произвольный модуль непрерывности, удовлетворяющий условию

то существует непрерывная 2p-периодич. функция f0(x), ряд Фурье которой расходится в некоторой точке, а модуль непрерывности w(d, f0) удовлетворяет условию w(d, f0)=O(w(d)).

Лит.:[1] Din i.U., Sopra la serie di Fourier, Pisa, 1872; [2] Lipschitz R., "J. reine und angew. Math., 1864, Bd 63, № 2, S. 296-308; [3] Lebesgne H., "Bull. Soc. math. France" 1910, t. 38, p. 184-210; [4] Hикольский С. М., "Докл. АН СССР", 1950, т. 73, № 3, с. 457 - 60; [5] Бари Н. К., Тригонометрические ряды, М., 1961.

В. И. Голубое.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ДИНИ - ЛИПШИЦА ПРИЗНАК" в других словарях:

  • Признак Лобачевского — признак сходимости числового ряда, предложенный Лобачевским между 1834 и 1836. Пусть есть убывающая последовательность положительных чисел, тогда ряд сходится или расходится одновременно с рядом …   Википедия

  • Признак Дирихле — Признак Дирихле  теорема, указывающая достаточные условия сходимости несобственных интегралов и суммируемости бесконечных рядов. Названа в честь немецкого математика Лежёна Дирихле. Содержание …   Википедия

  • Признак Жордана — признак сходимости рядов Фурье: если периодическая функция имеет ограниченную вариацию на отрезке , то её ряд Фурье сходится в каждой точке к числу ; если при этом функция непрерывна на отрезке …   Википедия

  • Признак Раабе — (признак Раабе Дюамеля) признак сходимости знакоположительных числовых рядов, установленный Йозефом Людвигом Раабе (Joseph Ludwig Raabe) и независимо Жан Мари Дюамелем. Содержание 1 Формулировка 2 Формул …   Википедия

  • Признак Бертрана — признак сходимости числовых рядов с положительными членами, установленный Жозефом Бертраном. Содержание 1 Формулировка 2 Формулировка в предельной форме …   Википедия

  • Признак Гаусса — общий признак сходимости числовых рядов с положительными членами, установленный в 1812 году Карлом Гауссом, при исследовании сходимости гипергеометрического ряда. Формулировка Пусть дан ряд и ограниченная числовая последовательность . Тогда если… …   Википедия

  • Признак Ермакова — признак сходимости числовых рядов с положительными членами, установленный Василием Ермаковым. Его специфика заключается в том, что он превосходит все прочие признаки своей чувствительностью . Эта работа опубликована в статьях: «Общая теория… …   Википедия

  • Признак Жамэ — признак сходимости числовых рядов с положительными членами, установленный Пьером Жамэ. Содержание 1 Формулировка 2 Формулировка в предельной форме …   Википедия

  • Признак Куммера — общий признак сходимости числовых рядов с положительными членами, установленный Эрнстом Куммером. Содержание 1 Формулировка 2 Формулировка в предельной форме …   Википедия

  • Признак сравнения — Признак сравнения  утверждение об одновременности расходимости или сходимости двух рядов, основанный на сравнении членов этих рядов. Содержание 1 Формулировка 2 Доказательство …   Википедия

  • Признак Дедекинда — признак сходимости числовых рядов вида (в общем случае и комплексные). Установлен Юлиусом Дедекиндом. Формулировка Ряд …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.