ДИНИ - ЛИПШИЦА ПРИЗНАК

ДИНИ - ЛИПШИЦА ПРИЗНАК

если непрерывная 2p-периодич. функция f(x)удовлетворяет условию

где w(d, f) - модуль непрерывности функции f(x), то ее ряд Фурье равномерно сходится к ней на всей числовой оси. Д.- Л. п. доказан У. Дини |1], а в частном случае, когда w(d, f)=O(da),при каком-либо

он установлен Р. Липшицем [2]. Утверждение Д.- Л. п. окончательно в следующем смысле. Если со (d) - произвольный модуль непрерывности, удовлетворяющий условию

то существует непрерывная 2p-периодич. функция f0(x), ряд Фурье которой расходится в некоторой точке, а модуль непрерывности w(d, f0) удовлетворяет условию w(d, f0)=O(w(d)).

Лит.:[1] Din i.U., Sopra la serie di Fourier, Pisa, 1872; [2] Lipschitz R., "J. reine und angew. Math., 1864, Bd 63, № 2, S. 296-308; [3] Lebesgne H., "Bull. Soc. math. France" 1910, t. 38, p. 184-210; [4] Hикольский С. М., "Докл. АН СССР", 1950, т. 73, № 3, с. 457 - 60; [5] Бари Н. К., Тригонометрические ряды, М., 1961.

В. И. Голубое.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "ДИНИ - ЛИПШИЦА ПРИЗНАК" в других словарях:

  • Признак Дини — Признак Дини  признак поточечной сходимости ряда Фурье. Несмотря на то, что ряд Фурье функции из сходится к ней в смысле нормы, он вовсе не обязан сходиться к ней поточечно (даже в случае непрерывной функции). Тем не менее, при некоторых… …   Википедия

  • ФУРЬЕ РЯД — функции f(х)по ортонормированной на промежутке ( а, b )системе функций ряд коэффициенты к рого определяются по формулам и наз. коэффициентами Фурье функции f. О функции f в общем случае предполагается, что она интегрируема с квадратом на ( а, b) …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»