ДИЗЪЮНКТНОЕ СЕМЕЙСТВО МНОЖЕСТВ

ДИЗЪЮНКТНОЕ СЕМЕЙСТВО МНОЖЕСТВ

- семейство, состоящее из попарно не пересекающихся множеств.

Б. А. Ефимов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать реферат

Смотреть что такое "ДИЗЪЮНКТНОЕ СЕМЕЙСТВО МНОЖЕСТВ" в других словарях:

  • Дизъюнктное объединение — Неформально говоря, дизъюнктное объединение  это измененная операция объединения множеств в теории множеств, которая каждый элемент снабжает индексом множества, из которого этот элемент вошёл в объединение. Содержание 1 Определение 2… …   Википедия

  • Размеченное объединение — Неформально говоря, дизъюнктное объединение это измененная операция объединения множеств в теории множеств, которая каждый элемент снабжает индексом множества, из которого этот элемент вошёл в объединение. Содержание 1 Определение 2 Использование …   Википедия

  • Словарь терминов общей топологии — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч …   Википедия

  • Дискетная топология — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Замкнутое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Замкнутое подмножество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Компонента связности — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Континуум (топология) — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Конус над топологическим пространством — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Локально стягиваемое пространство — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»