ГЁЛЬДЕРОВО ПРОСТРАНСТВО

ГЁЛЬДЕРОВО ПРОСТРАНСТВО

банахово пространство ограниченных и непрерывных функций , определенных на множестве Е n-мерного евклидова пространства и удовлетворяющих на Е Гёльдера условию.

Г. п. - целое, состоит из траз непрерывно дифференцируемых на Ефункций (непрерывных при т=0).

Г. п. - целое, состоит из функций, траз непрерывно дифференцируемых (непрерывных при т = 0), все т-е производные к-рых удовлетворяют условию Гёльдера с показателем .

Норма в вводится следующим образом:


где - целые,


Основные свойства Г. п. для ограниченной связной области ( - замыкание ):

1) вложено в , если , k, т - целые, , . При этом и постоянная Ане зависит от .

2) Единичный шар пространства компактен в , если . Следовательно, любое ограниченное множество функций из содержит последовательность функций, сходящихся в метрике к функции пространства .

Лит.: [1] Миранда К., Уравнения с частными производными эллиптического типа, пер. с итал., М., 1957.

Л. П. Купцов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужна курсовая?

Полезное


Смотреть что такое "ГЁЛЬДЕРОВО ПРОСТРАНСТВО" в других словарях:

  • ВЛОЖЕНИЯ ТЕОРЕМЫ — теоремы, относящиеся к циклу вопросов, посвященных изучению неравенств между нормами одной и той же функции, принадлежащей к разным классам (нормированным пространствам). Обычно речь идет о двух классах и , где есть часть и при этом выполняется… …   Математическая энциклопедия

  • ГЁЛЬДЕРА УСЛОВИЕ — неравенство, в к ром приращение функции оценивается через приращение ее аргумента. Функция , определенная в области Е n мерного евклидова пространства, удовлетворяет в точке Г. у. с показателем (порядка ), где , и коэффициентом (у), если для всех …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»