МНОГОЗНАЧНЫЕ ЛОГИКИ


МНОГОЗНАЧНЫЕ ЛОГИКИ
МНОГОЗНАЧНЫЕ ЛОГИКИ
Обычная Аристотелева логика называется двузначной, потому что ее высказывания, имеют два значения, то есть они могут быть либо истинными, либо ложными (см. МАТЕМАТИЧЕСКАЯ ЛОГИКА). Однако мы знаем, что в реальности далеко не всегда можно определить точно истинность или ложность высказывания, и бывают переходные случаи. Например, есть высказывания неопределенные с точки зрения их истинности или ложности: Коммунизм - это молодость мира. Нынешний король Франции лыс. Вот что пишет по этому поводу один из виднейших современных философов Георг Хенрик фон Вригт: "Возьмем, например, процесс выпадения дождя. Этот процесс продолжается некоторое время, а затем прекращается. Но предположим, что это происходит не внезапно, а постепенно. Пусть р иллюстрирует, что на определенном отрезке времени вначале определенно идет дождь, потом определенно не идет дождь ( - р), а между этими временными точками находится переходная область, когда может капать небольшое количество капель -слишком мало для того, чтобы заставить нас сказать, что идет дождь, но слишком много для того, чтобы мы могли воздержаться от утверждения, что дождь опредленно закончился. В этой области высказывание р ни истинно, ни ложно". Таким образом, появляется еще третье значение высказывания: "ни истинно, ни ложно"; или "и истинно, и ложно"; или "неопределенно". Когда соответствующие явления стали обнаруживаться в математике и физике - например в квантовой механике при описании микромира, частица может производить одновременно воздействия на места, в которых она сама не находится, или как в трансперсональвой психологии, когда сознание настолько расширяется, что может одновременно находиться в разных местах, - то назревает необходимость в адекватном описании таких аномальных, с точки зрения двузначной логики, явлений. Здесь-то и помогает аппарат многозначной, например трехзначной, логики, которая наряду с обычными значениями "истинно" и "ложно" оперирует значением "неопределенно", или "неизвестно", или "ненаблюдаемо". Мы знаем (см. МАТЕМАТИЧЕСКАЯ ЛОГИКА), что в основе логического исчисления лежат несколько самоочевидных истин, аксиом, которые мы называем законами логики. В обычной двухзначной логике таких законов четыре: закон тождества (любое высказывание с необходимостью равно самому себе); закон двойного отрицания (двойное отрицание высказывания равно утверждению этого высказывания); закон исключенного третьего (высказывание может быть либо истинным, либо ложным); закон противоречия (неверно, что высказывание может быть одновременно истинным и ложным). В начале ХХ в. выяснилось, что закон исключенного третьего, строго говоря, не является законом логики, в силу того, что он действует только применительно к конечному множеству объектов, тогда как, например, числа представляют собой бесконечное множество. Вот что пишет об этом известный логик, а также автор знаменитых диссидентских памфлетов А. А.Зиновьев: "Возьмем утверждение: всякое целое число, большее единицы, есть либо простое, либо сумма двух простых, либо сумма трех простых. Неизвестно, так это или нет, хотя во всех рассмотренных случаях это так (а их конечное число). Назовем исключительным числом число, которое не удовлетворяет принятому утверждению. Существует ли такое число или нет? Мы не можем указать такое число и не можем вывести противоречие из допущения его существования. Отсюда делается вывод о неприменимости закона исключенного третьего в таких случаях". Вданном случае, также показывающем, что не все законы двухзначной логики срабатывают, речь шла о так называемом интуиционистском понимании логики (авторы концепции интуиционизма - Л. Броуэр и А. Гейтинг). Аналогичным образом, двухзначная логика плохо описывает некоторые модальные высказывания (см. МОДАЛЬНОСТИ). Например, высказывания "возможно, идет дождь" и "возможно, не идет дождь" не противоречат друг другу. Может быть, идет, а может, уже кончился. Но их не модальные аналоги - "дождь идет" и "дождь не идет" - являются явными противоречиями. Для подобных случаев и создавались М. л. Их авторы - Я. Лукасевич, Э. Пост, Д. Бочвар, Г. Рейхенбах стремились более адекватно, чем это делает классическая двузначная логика, описать такие сложные процессы, как процессы в микромире, или обойти такие технические трудности, как в примере с модальными высказываниями. В результате было построено несколько самостоятельных систем М. л. со своей аксиоматикой, своими законами, отличающимися от законов двузначной логики. Мы не будем вдаваться в суть этих законов - важно, что они построены и что мы поняли, чему они служат.

Словарь культуры XX века. .


.

Смотреть что такое "МНОГОЗНАЧНЫЕ ЛОГИКИ" в других словарях:

  • МНОГОЗНАЧНЫЕ ЛОГИКИ —     МНОГОЗНАЧНЫЕ ЛОГИКИ обобщение классической двузначной логики (см. Логика высказываний) к примеру, посредством которого к обычным истинностным значениям “истина” и “ложь” добавляются и другие (промежуточные) значения. Этот факт указывает на то …   Философская энциклопедия

  • МНОГОЗНАЧНЫЕ ЛОГИКИ – — обобщение классической двузначной логики (см. Логика высказываний) к примеру, посредством которого к обычным истинностным значениям «истина» и «ложь» добавляются и другие (промежуточные) значения. Этот факт указывает на то, что принцип… …   Философская энциклопедия

  • АЛГЕБРА ЛОГИКИ —         система алгебраич. методов решения логич. задач, а также совокупность задач, решаемых такими методами. А. л. в узком смысле слова алгебраич. (табличное, матричное) построение классич. логики высказываний, в котором рассматриваются… …   Философская энциклопедия

  • НЕКЛАССИЧЕСКИЕ ЛОГИКИ —     НЕКЛАССИЧЕСКИЕ ЛОГИКИ широкая область логических исследований, выходящая за пределы или, наоборот, сужающая область исследований классической логики высказываний и логики предикатов.     Предпосылки для неклассической логики были высказаны… …   Философская энциклопедия

  • неклассические логики —         НЕКЛАССИЧЕСКИЕ ЛОГИКИ широкая область логических исследований, выходящая за пределы или, наоборот, сужающая область исследований классической логики высказываний и логики предикатов.         Идеи для построения Н. л. были высказаны еще до …   Энциклопедия эпистемологии и философии науки

  • Алгебра логики —         раздел математической логики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности), и логические операции над ними. А. л. возникла в середине 19 в. в трудах Дж. Буля (См. Буль) и развивалась… …   Большая советская энциклопедия

  • АЛГЕБРА ЛОГИКИ — раздел математической логики, изучающий высказывания, рассматриваемые со стороны их логич. значений (истинности пли ложности), и логич. операций над ними. А. л. возникла в сер. 19 в. в трудах Дж. Буля (см. [1], [2]) и развилась затем в работах Ч …   Математическая энциклопедия

  • Многозначная логика — Многозначная логика  тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году[1]. В настоящее время существует… …   Википедия

  • ПАРА НЕПРОТИВОРЕЧИВАЯ —     ПАРА НЕПРОТИВОРЕЧИВАЯ логика (греч. тора возле, вне) класс логических исчислений, в которых логический принцип “из противоречия следует все, что угодно”, не имеет места. Термин “паранепротиворечивая логика” введен в 1976 перуанским философом… …   Философская энциклопедия

  • ПАРАНЕПРОТИВОРЕЧИВАЯ — логика (греч. παρά – возле, вне) – класс логических исчислений, в которых логический принцип «из противоречия следует все, что угодно», не имеет места. Термин «паранепротиворечивая логика» введен в 1976 перуанским философом Ф.Миро Квисада.… …   Философская энциклопедия

Книги

Другие книги по запросу «МНОГОЗНАЧНЫЕ ЛОГИКИ» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.