ВЫРОЖДЕНИЕ ЭНЕРГЕТИЧЕСКИХ УРОВНЕЙ


ВЫРОЖДЕНИЕ ЭНЕРГЕТИЧЕСКИХ УРОВНЕЙ
существование двух или более стационарных состояний квантовой системы (атома, молекулы) с одинаковыми значениями энергии. Система, полная энергия к-рой определяется заданием оператора Я (гамильтониана), может иметь тстационарных состояний, для к-рых ур-ние Шрёдингера 1086-14.jpg определяет соответствующие волновые ф-ции 1086-15.jpg(i =1, 2, ..., т)и одно значение энергии Е, одинаковое для всех тсостояний. Энергетич. уровень с энергией Епри 1086-16.jpg наз. вырожденным, число тразл. независимых волновых ф-ций - кратностью вырождения уровня. О состояниях с волновыми ф-циями 1086-17.jpg говорят как о состояниях, вырожденных по энергии, или вырожденных состояниях. Если одному значению энергии отвечает одно состояние, т. е. m=1, уровень наз. невырожденным.

В. э. у. играет важную роль при вычислении макроскопич. характеристик в-ва методами статистич. термодинамики. В выражении для статистич. суммы (суммы по состояниям) газа, состоящего из одинаковых молекул, m-кратно вырожденному энергетич. уровню молекулы с энергией Еотвечает вклад mехр( Ч E/kT), где k - постоянная Больцмана, Т - абс. т-ра. Т. обр., в условиях термодинамич. равновесия заселенность энергетич. уровня определяется не только значением энергии системы, но и кратностью вырождения этого уровня.

Как правило, В. э. у. связано с определенными св-вами симметрии квантовой системы. Для таких систем, у к-рых все направления в пространстве равноправны (напр., для своб. частиц), В. э. у. обусловлено наличием состояний с разными направлениями импульса, но с одинаковыми значениями квадрата импульса. Система, симметричная относительно всевозможных поворотов в пространстве, напр. частица, движущаяся в сферически симметричном поле, имеет вырождение по энергии, вызванное существованием (2L + 1) состояний с разными значениями проекции момента импульса на заданную ось при фиксиров. значении квадрата полного момента импульса 1086-18.jpg , где 1086-19.jpg -постоянная Планка, L - квантовое число, равное 1, 2, 3, ... (при L = О вырождение не имеет места). Этим обусловлено, напр., В. э. у. электрона в атоме, отвечающих одному значению орбитального квантового числа, вырождение вращат. состояний молекулы (см. Вращательные спектры). Если ядерная конфигурация молекулы имеет ось симметрии порядка выше 2-го, возможно вырождение и электронных состояний молекулы (см. Электронные спектры).

Помимо В. э. у., явно связанного с определенными св-вами симметрии системы, возможно и т. наз. случайное вырождение, когда совпадение энергий для ряда состояний происходит без видимых причин. Важный пример случайного вырождения - совпадение энергий возбужденных колебат. состояний для разных степеней свободы молекулы (см. Колебательные спектры).

При нек-рых воздействиях на систему В. э. у. может сниматься, т. е. ранее вырожденные состояния начинают различаться по энергии. Происходит расщепление уровней, что приводит к появлению ряда новых линий в спектре атома или молекулы. Вырождение снимается, по крайней мере частично, при любом воздействии, по-разному влияющем на вырожденные состояния. Обычно такие воздействия приводят к понижению симметрии системы (см. Симметрия молекул). В. э. у. атома водорода частично снимается во внеш. электрич. поле. Подобное явление используют, в частности, для эксперим. определения дипольных моментов молекул. Расщепление уровней нередко происходит и во внеш. магн. поле (см. Зеемана эффект).

Теоретич. анализ энергетич. состояний молекул проводят, как правило, с помощью упрощенных моделей, не учитывающих в полной мере всех взаимод. в системе ядер и электронов. При этом характерно появление В. э. у., к-рое, однако, снимается при переходе к моделям более высокого уровня. Так, при оценке первых потенциалов ионизации молекулы СН 4 по методу молекулярных орбиталей получают 4-кратное вырождение основного электронного состояния иона СН 4, к-рое отвечает удалению электрона с одной из четырех локализованных молекулярных орбиталей связи СЧН. Модели, более полно учитывающие электронную корреляцию (см. Конфигурационного взаимодействия метод), предсказывают снятие 4-кратного вырождения и появление 3-кратно вырожденного и одного невырожденного уровня (при сохранении эквивалентности всех четырех СЧН связей). Соответственно для молекулы СН 4 должны наблюдаться хотя бы два различных, но близких по величине потенциала ионизации, что подтверждено экспериментально. Точно так же учет колебательно-вращат. взаимодействий снимает вырождение вращат. состояний молекул; снятие случайного вырождения колебат. состояний связывают с учетом ангармоничности потенциальных пов-стей; спин-орбитальное взаимод. частично снимает В. э. у. с различными значениями проекции спина на ось. Для квантовой химии очень важен эффект снятия вырождения электронных состояний молекулы при изменении ее ядерной конфигурации. Так, учет электронно-колебат. взаимодействия снимает упомянутое выше 3-кратное В. э. у. иона СН 4 и объясняет колебат. структуру фотоэлектронных спектров СН 4.

Вырождение электронных состояний молекул (пересечение пов-стей потенциальной энергии) наблюдается довольно редко. Существует правило, согласно к-рому такое вырождение возможно лишь для симметричных конфигураций ядер, если состояния относятся к разным типам симметрии (т. наз. правило непересечения). Однако если определенной конфигурации ядер молекулы все же соответствует вырождение ее электронных состояний, то вблизи этой конфигурации поведение системы существенно усложняется, напр. нарушается адиабатическое приближение, может наблюдаться предиссоциация. Изменение кратности вырождения электронных состояний молекулярных комплексов при изменении их строения качественно описывает кристаллического поля теория. По характеру В. э. у. можно судить о симметрии молекулы, величине колебательно-вращат. взаимодействия. Снятие В. э. у. молекулярной системы под действием разл. факторов лежит в основе мн. эксперим. методик исследования молекул (напр., мессбауэровской спектроскопии, ЭПР, ЯМР). В. И. Пупышев.


Химическая энциклопедия. — М.: Советская энциклопедия. . 1988.

Смотреть что такое "ВЫРОЖДЕНИЕ ЭНЕРГЕТИЧЕСКИХ УРОВНЕЙ" в других словарях:

  • вырождение энергетических уровней — energijos lygmenų išsigimimas statusas T sritis fizika atitikmenys: angl. degeneracy of energy levels vok. Energieniveauentartung, f rus. вырождение энергетических уровней, n pranc. dégénérescence des niveaux d’énergie, f …   Fizikos terminų žodynas

  • Вырождение —         в квантовой механике, заключается в том, что некоторая величина f, описывающая физическую систему (атом молекулу и т.п.) имеет одинаковое значение для различных состояний системы. Число таких различных состояний, которым отвечает одно и… …   Большая советская энциклопедия

  • КРИСТАЛЛИЧЕСКОГО ПOЛЯ ТЕОРИЯ — квантовохим. теория, в к рой низшие по энергии состояния молекулы описываются как состояния одного атома (иона), находящегося в электростатич. поле, созданном остальными частицами. Как правило, К. п. т. применяется к координац. соед., кристаллам… …   Химическая энциклопедия

  • АТОМ — (от греч. atomos неделимый), наименьшая частица хим. элемента, носитель его св в. Каждому хим. элементу соответствует совокупность определенных А. Связываясь друг с другом, А. одного или разных элементов образуют более сложные частицы, напр.… …   Химическая энциклопедия

  • ПОЛУПРОВОДНИКИ — в ва, характеризующиеся увеличением электрич. проводимости с ростом т ры. Хотя часто П. определяют как в ва с уд. электрич. проводимостью а, промежуточной между ее значениями для металлов (s ! 106 104 Ом 1 см 1) и для хороших диэлектриков (s ! 10 …   Химическая энциклопедия

  • ЭЛЕКТРОННЫЕ СПЕКТРЫ — мол. спектры, обусловленные квантовыми переходами из одного электронного состояния молекулы в другое. Переходы, при к рых происходит поглощение кванта электромагн. излучения, образуют Э. с. поглощения. Переходы, сопровождающиеся испусканием… …   Химическая энциклопедия

  • ТУННЕЛЬНЫЙ ЭФФЕКТ — квантовый эффект, состоящий в проникновении квантовой частицы сквозь область пространства, в к рой согласно законам классич. физики нахождение частицы запрещено. Классич. частица, обладающая полной энергией Eи находящаяся в потенц. поле, может… …   Химическая энциклопедия

  • КВАНТОВАЯ МЕХАНИКА — изучает состояния микрочастиц и их систем (элементарных частиц, атомных ядер, атомов, молекул, кристаллов), изменение этих состояний во времени, а также связь величин, характеризующих состояния микрочастиц, с эксперим. макроскопич. величинами. К …   Химическая энциклопедия

  • МОЛЕКУЛА — (новолат. molecula, уменьшит. от лат. moles масса), микрочастица, образованная из двух или большего числа атомов и способная к самостоят. существованию. Имеет постоянный состав (качеств. и количеств.) входящих в нее атомных ядер и фиксир. число… …   Химическая энциклопедия

  • Energieniveauentartung — energijos lygmenų išsigimimas statusas T sritis fizika atitikmenys: angl. degeneracy of energy levels vok. Energieniveauentartung, f rus. вырождение энергетических уровней, n pranc. dégénérescence des niveaux d’énergie, f …   Fizikos terminų žodynas


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.