- ТУННЕЛЬНЫЙ ЭФФЕКТ
квантовый эффект, состоящий в проникновении квантовой частицы сквозь область пространства, в к-рой согласно законам классич. физики нахождение частицы запрещено. Классич. частица, обладающая полной энергией Eи находящаяся в потенц. поле, может пребывать лишь в тех областях пространства, в к-рых ее полная энергия не превышает потенц. энергию Uвзаимодействия с полем. Поскольку волновая ф-ция квантовой частицы отлична от нуля во всем пространстве и вероятность нахождения частицы в определенной области пространства задается квадратом модуля волновой ф-ции, то и в запрещенных (с точки зрения классич. механики) областях волновая ф-ция отлична от нуля.
T. э. удобно иллюстрировать на модельной задаче об одномерной частице в поле потенциала U(x) (x- координата частицы). В случае симметричного двухъямного потенциала (рис. а)волновая ф-ция должна "умещаться" внутри ям, т. е. она представляет собой стоячую волну. Дискретные энерге-тич. уровни, к-рые расположены ниже барьера, разделяющего минимумы потенциала, образуют близко расположенные (почти вырожденные) пары. Разность энергетич. уровней, составляющих пару, наз. туннельным расщеплени-е м, эта разность обусловлена тем, что точное решение задачи (волновая ф-ция) для каждого из квантовых состояний дело-кализовано в обоих минимумах потенциала и все точные решения отвечают невырожденным уровням (см. Вырождение энергетических уровней). Вероятность T. э. определяется коэффициентом прохождения сквозь барьер волнового пакета, к-рый описывает нестационарное состояние частицы, локализованной в одном из минимумов потенциала.
Кривые потенц. энергии U (х )частицы в случае, когда на нее действует сила притяжения (а - две потенц. ямы, б - одна потенц. яма), и в случае, когда на частицу действует сила отталкивания (отталкивательный потенциал, в). E - полная энергия частицы, х - координата. Тонкими линиями изображены волновые ф-ции.
В потенц. поле с одним локальным минимумом (рис. б)для частицы с энергией E, большей потенциала взаимодействия при c =, дискретные энергетич. состояния отсутствуют, но существует набор квазистационарных состояний, в к-рых велика относит. вероятность нахождения частицы вблизи минимума. Волновые пакеты, отвечающие таким квазистационарным состояниям, описывают метастабильные квантовые состояния; волновые пакеты расплываются и исчезают вслед-ствии T. э. Эти состояния характеризуются временем жизни (вероятностью распада) и шириной энергетич. уровня.
Для частицы в отталкивательном потенциале (рис. в)волновой пакет, описывающий нестационарное состояние по одну сторону от потенц. барьера, даже если энергия частицы в этом состоянии меньше высоты барьера, может с определенной вероятностью (наз. вероятностью проникновения или вероятностью туннелирования) проходить по др. сторону барьера.
Наиб. важные для химии проявления T. э.: 1) туннельные расщепления дискретных колебат., вращат. и электронно-ко-лебат. уровней. Расщепления колебат. уровней в молекулах с неск. эквивалентными равновесными ядерными конфигурациями - это инверсионное удвоение (в молекулах типа аммиака), расщепление уровней в молекулах с заторможенным внутр. вращением (этан, толуол) или в нежестких молекулах, для к-рых допустимы внутримол. перегруппировки, приводящие к эквивалентным равновесным конфигурациям (напр., PF5). Если разл. эквивалентные минимумы на поверхности потенциальной энергии оказываются разделенными потенц. барьерами (напр., равновесные конфигурации для право- и левовращающих изомеров сложных молекул), то адекватное
Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.