- ЭЛЕКТРОЛИТЫ ТВЁРДЫЕ
- в-ва, в к-рых электропроводность осуществляется движением ионов к.-л. одного знака -катионами или анионами. Ионы передвигаются по свободным позициям в структуре в-ва, разделенным невысокими потенц. барьерами (0,1-0,5 эВ). Кол-во позиций, к-рые могут занимать ионы проводимости, намного больше кол-ва самих ионов. Кроме того, эти позиции могут различаться по степени заселенности ионами. Напр., в элементарной ячейке -Agl на 42 позиции приходятся 2 иона Ag+, причем 12 тетраэдрич. позиций являются предпочтительными. Т. обр., подрешетка ионов проводимости разупорядочена, в то время как остальные ионы Э. т. образуют жесткий каркас, и их перенос возможен по обычным механизмом образования точечных дефектов (вакансий и междоузельных ионов).
Ионная составляющая общей проводимости Э. т., как правило, на 5-6 порядков больше электронной, т. е. числа переноса (см. Электропроводность электролитов )ионов проводимости практически равны 1. Коэф. диффузииi этих ионов сравнимы с таковыми для конц. водных р-ров и соответствуют величинам порядка 10-5 - 10-6 см 2/с.
Э. т. относят к суперионным проводникам и часто наз. супериониками. Однако суперионик- более общее понятие, относящееся к высокопроводящим соед. как с ионной проводимостью (Э. т.), так и со смешанной ионно-электронной проводимостью. В электрохим. системах в отличие от Э. т. суперионики со смешанной проводимостью выполняют роль электродов.
Температурная зависимость ионной проводимости Э. т. описывается ур-нием:где А - константа, Т - абс. т-ра, Е а -> энергия активации, k - константа Больцмана. Значение и Е а > для наиб. известных Э. т. приведены в таблице.
Э. т. подразделяются на электролиты с собственным структурным разупорядочением в одной из подрешеток и с примесным. К первым относятся в-ва, структура к-рых либо уже имеет пути проводимости для ионов определенного типа, как, напр., Na- -глинозем (полиалюминат натрия Na1+xAl11O17), либо приобретает их вследствие фазового перехода, как, напр., Agl ( -переход при 420 К). Пути проводимости могут иметь вид каналов [напр., в (C5H5NH)Ag5I6], щелей (напр., в Na- -глиноземе) или трехмерных сеток (напр., в -Agl).
К Э. т. с примесным разупорядочением относятся твердые р-ры замещения, образующиеся в ионных кристаллах при легировании их ионами с валентностью, отличной от валентности основного иона. Возникающий при этом дефицит (или избыток) заряда компенсируется образованием дефектов противоположного знака. Так, в оксидах Zr, Hf, Се и Th, легир. оксидами двух- и трехвалентных металлов (Са, Y, Sc и др.), компенсация заряда примеси осуществляется кислородными вакансиями. Флюорит CaF2 и изоморфный ему SrF2 образуют твердые р-ры замещения с фторидами трехвалентных РЗЭ, обладающих высокой подвижностью ионов F-. Последние легко обмениваются на ионы О 2-.
Характерное св-во Э. т.- способность к замещению одних ионов проводимости на другие. Напр., при выдерживании Na- -глинозема в расплаве AgNO3 ионы Na+ м. б. полностью замещены ионами Ag+. Если же Ag-b-глинозем поместить в р-р к-ты, то можно получить глинозем с высокой проводимостью по протонам - ионам Н +.ХАРАКТЕРИСТИКА ПОЛИКРИСТАЛИЧЕСКИХ ТВЕРДЫХ ЭЛЕКТРОЛИТОВ
ЭлектролитПодвижный ионСм/м (298 K)
a,> эВ
Ag+337 (423 K)0,101aRbAg4I5Ag+280,104Ag6WO4I4Ag+4,20,248(C5H5NH)Ag5I6Ag+21 (323 K)0,198 бCs2Ag3Br3I2Ag+0,10,38Cu4RbCl3I2Cu+470,115Na2O x 10Al2O3eNa+3,30,140Na2O x 10Al2O3Na+0,50,148Na3Zr2Si2 Р012Na+14 (573 K)0,246 дNа 3Sс 2 (РO4)3Na+19 (573 K)0,144 вNa5DySi4O12Na+0,500,208CsHSO4H+1,8 (435 K)0,33 жHUO2PO2 x 4H2O3H+0,320,32H3PW12O40 x 19H2O3H+1,200,432Cs3PW12O40 x 10H2O3H+1,60,223Sb2O5 x 5,43H2O3H+0,750,160,75Li4GeO4 x 0,25Li3PO4Li+9,1 (573 K)0,42Sr0,8La0,2F2,2F-0,11 (573 K)0,1960,91ZrO2 x 0,09Sc2O3O2-30 (1273 K)0,43(Bi2O3)0,8(SrO)0,2O2-0,6 (773 K)0,8a При Т>420 К. б При Т>315 К. в Стеклообразное состояние. г Монокристалл (перпендикулярно оси с). д При Т>505 К. в При Т>429 К. ж При Т>414 К. з Данные при относит. влажности ок. 60%
Протонпроводящие Э. т.- в осн. кристаллогидраты твердых орг. и неорг. к-т и их солей, в к-рых перенос Н осуществляется либо по сетке водородных связей молекул Н 2 О (механизм туннельного перехода), либо перемещением иона гидроксония Н 3 О + (прыжковый механизм), либо по молекулам, адсорбир. на межзеренных границах поликристаллич. материала. Исключение составляют безводные гидросульфаты и гидроселенаты щелочных металлов (напр., CsHSO4 и CsHSeO4), к-рые приобретают высокую ионную проводимость при т-рах выше структурного фазового перехода, когда число возможных мест локализации протонов оказывается вдвое больше числа самих протонов. Обладают протонной проводимостью и мн. полимерные структуры (см. ниже).
Большинство Ag+ -проводящих Э. т. получают либо выращиванием монокристаллов (-Agl, RbAg4I5), либо твердофазным синтезом (RbAg4I5, (C5H5NH)Ag5I6 и др.). Для изготовления Li+-, Na+- и О 2- -проводящих Э. т. используют технологию произ-ва керамики.
Существуют полимерные Э. т., к-рые обладают пластичностью, из них можно изготавливать тонкие пленки толщиной 0,5-250 мкм. По электропроводности они сравнимы с жидкими и твердыми электролитами (1-10-3 См/м). Полимерные Э. т.- как правило, аморфные комплексы полимер-соль или полимер-к-та на. Получают их из полиэтиленоксида (ПЭО) и др. сходных по строению полимеров. Ион проводимости определяется природой второго компонента. При этом ион мигрирует вдоль полимерной цепи благодаря сегментальным движениям полимерной матрицы. Температурная зависимость проводимости комплексов удовлетворяет ур-нию, основанному на теории свободного объема:где Т 0 - идеальная т-ра стеклования полимера, Т - т-ра системы, В - константа.
В системе ПЭО-Н 3 РО 4 образуется комплекс (ПЭО) Н 3 РО 4 с n =1,33, обладающий протонной проводимостью ок. 10-3 См/м (298 К). В комплексе ПЭО-NH4 НSО 4 анионы практически неподвижны и протон переносится катионами (2 x 10-2 См/м). В комплексах ПЭО-LiС1О 4 ток переносится как ионами Li+, так и на подвижность к-рых оказывает влияние неполная диссоциация соли и образование ионных кластеров и
Аморфные структуры со св-вами Э. т. существуют и среди неорг. соединений. Это - стекла, представляющие собой трехмерные сетки, не имеющие строгой периодичности, но сохраняющие ближний порядок в расположении ионов. Такие структуры типа -RbAg4I5 обнаружены в смешанных галогенидных системах AgX-CsX и AgX-CuX-CsX (X = С1, Вr, I).
Используют Э. т. в химических источниках тока, ионисторах, хим. сенсорах, в качестве ионселективных мембран, при термодинамич. исследованиях и др.Лит.: Укше Е. А., Букун Н. Г., Твердые электролиты, М., 1977; Чеботин В. Н., Перфильев М. В., Электрохимия твердых электролитов, М., 1978; Атовмян Л. О., Укше Е. А., в сб.: Физическая химия. Современные проблемы, под ред. Я. М. Колотыркина, М., 1983; Гуревич Ю. Я., Твердые электролиты, М., 1986; Мурыгин И. В., Электродные процессы в твердых электролитах, М., 1991; Сыромятников В. Г. [и др.], "Успехи химии", 1995, т. 64, в. 3, с. 265-74; Solid electrolytes, ed. by S. Geller., В., 1977; Armand M. В., Chabagno J. M., Duclot M. J., в кн.: Fast lon transport in solids, ed. P. Vashisnta, Amst., 1979, p. 131; Poulsen F. W., в кн.: High conductivity solid ionic conductors. Recent trends and applications, ed. by T. Takahashi, L., 1989, p. 166.
H. Г. Букун.
Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.