- Лагранжа метод множителей
-
метод решения задач на Условный экстремум; Л. м. м. заключается в сведении этих задач к задачам на безусловный экстремум вспомогательной функции — т. н. функции Лагранжа.Для задачи об экстремуме функции f (х1, x2,..., xn) при условиях (уравнениях связи) φi(x1, x2, ..., xn) = 0, i = 1, 2,..., m, функция Лагранжа имеет видМножители y1, y2, ..., ym наз. множителями Лагранжа.Если величины x1, x2, ..., xn, y1, y2, ..., ym суть решения уравнений, определяющих стационарные точки функции Лагранжа, а именно, для дифференцируемых функций являются решениями системы уравнений
i = 1, …, n;
i = 1, …,m,
то при достаточно общих предположениях x1, x2, ..., xn доставляют экстремум функции f. Функция Лагранжа L применяется также при исследовании задач вариационного исчисления и математического программирования. Впервые Л. м. м. был предложен в 1797 Ж. Лагранжем в связи с задачами дифференциального исчисления.Лит.: Кудрявцев Л. Д., Математический анализ, т. 2, М., 1970.
Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.
Метод множителей Лагранжа — Метод множителей Лагранжа, метод нахождения условного экстремума функции , где , относительно ограничений , где меняется от единицы до . Содержание … Википедия
Лагранжа множители — Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где , относительно m ограничений , i меняется от единицы до m. Содержание 1 Описание метода … Википедия
Лагранжа функция — Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где , относительно m ограничений , i меняется от единицы до m. Содержание 1 Описание метода … Википедия
Метод Лагранжа — (дифференциальные уравнения) метод решения дифференциальных уравнений. Метод Лагранжа приведения квадратичной формы к каноническому виду Метод множителей Лагранжа … Википедия
ЛАГРАНЖА УРАВНЕНИЯ — механики. 1) Лагранжа уравнения 1 го рода дифференциальные ур ния движения механич. системы, к рые даны в проекциях на прямоугольные координатные оси и содержат т. н. множители Лагранжа. Получены Ж. Лагранжем в 1788. Для голономной системы,… … Физическая энциклопедия
МЕТОД ОПТИМИЗАЦИИ — метод построения алгоритмов нахождения максимумов функции и точек, в которых они достигаются, при наличии ограничений или без них. Обычно рассматривается случай, когда функция задана в одномерном или многомерном пространстве; однако М.о. обобщены … Большой экономический словарь
Множители Лагранжа — Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где , относительно m ограничений , i меняется от единицы до m. Содержание 1 Описание метода … Википедия
Множитель Лагранжа — Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где , относительно m ограничений , i меняется от единицы до m. Содержание 1 Описание метода … Википедия
Функция Лагранжа — Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где , относительно m ограничений , i меняется от единицы до m. Содержание 1 Описание метода … Википедия
Метод функционала плотности — Теория функционала плотности (англ. density functional theory, DFT) метод расчёта электронной структуры систем многих частиц в квантовой физике и квантовой химии. В частности, применяется для расчёта электронной структуры молекул и… … Википедия