Полуправильный многоугольник
- Полуправильный многоугольник
-
Под этим именем подразумевают многоугольник, получаемый при проектировании правильного многоугольника на какую-либо плоскость. Проекция может быть ортогональная или косая.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон.
1890—1907.
Смотреть что такое "Полуправильный многоугольник" в других словарях:
МНОГОУГОЛЬНИК — 1) Замкнутая ломаная линия, именно: если различные точки, никакие последовательные три из к рых не лежат на одной прямой, то совокупность отрезков наз. многоугольником (см. рис. 1). М. могут быть пространственными или плоскими (ниже… … Математическая энциклопедия
Правильный многогранник — Додекаэдр Правильный многогранник или платоново тело это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией … Википедия
Многогранник — В Викисловаре есть статья «многогранник» … Википедия
Платона тела — Додекаэдр Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его… … Википедия
Платоново тело — Додекаэдр Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его… … Википедия
Платоновы тела — Додекаэдр Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его… … Википедия
Правильные многогранники — Додекаэдр Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его… … Википедия