Интерполирование

Интерполирование
в математике — один из важнейших способов приближенного вычисления. Задача И. заключается в том, чтобы по данным величинам некоторой функции для известных значений переменных независимых (аргументов) найти величину функции для произвольного (обыкновенно промежуточного) значения этих переменных независимых. Этой задачей занимались Валлис, Ньютон, Эйлер и другие математики. Найти формулу И. значит заменить искомую функцию более простой, обыкновенно многочленом, причем коэффициенты и степени этого многочлена подбираются так, чтобы значение его для данного значения переменных независимых совпадало с заданными значениями искомой функции. Формулы И. представляют выражения, в которых искомая функция представляется при помощи данных величин функции и их последовательных разностей. В нижеследующей таблице в первом столбце стоят последовательные аргументы (значения независимой переменной), во втором — соответствующие величины функции, а в следующих — последовательные разности, так что b "' = а " — а "', b " = а' — а "... с " = b "b "'...
Для вычисления величины функции а для аргумента Т + nh, где n < 1, можно употребить одну из следующих формул И.:
Формула Ньютона.
a = ao + {(b' + b1)/2 — 1/6[(d' + d1)/2] +... }n + {co/2 — eo/24 +... }n2 + {1/6[(d' + d1)/2] —... }n3 +...
Формула Бесселя.
a = ao + nb1 + [n(n — 1)/1.2].[(co + c1)/2] + [n(n — 1)(n — 1/2)/1.2.3]d1 + [(n + 1).n(n — 1)(n — 2)/1.2.3.4].[(eo + e1)/2] +...
Формула Стирлинга.
a = ao + [(b' + b1)/2]n + co(n2/1.2) + [(d' + d1)/2].[(n — 1)n(n + 1)/1.2.3] + eo[(n — 1)n2(n + 1)/1.2.3.4] +...
Числовой пример. Даны склонения Луны для отдельных моментов, следующих через 12 часов, и требуется найти склонение Луны для 2 янв. в 15 час. среднего времени.
Для 15 ч. 2-го января n = ¼, и потому, употребив одну из вышеприведенных формул И., получится а = 12°58'59,4 ".
Простейший случай И. встречается при подыскивании логарифмов чисел, которые в таблицах даются лишь для известных последовательных значений аргумента. В этом случае аргументы настолько сближены, что действительное значение имеют только первые разности; прочие разности равны нулю, и потому все вышеприведенные формулы обращаются в a = ao + nb, т. е. И. сводится к решению простой пропорции.
При помощи И. производится и нахождение аргумента для данного промежуточного значения функции, т. е. решается и обратная задача. В этом случае одну из формул И. нужно решить относительно неизвестной n. Так как коэффициенты у различных степеней n весьма быстро уменьшаются, то вычисление производится последовательными приближениями, причем для первого приближения принимается n = (a — a0)/b. При вычислении по таблицам чисел по данному логарифму это первое приближение есть уже окончательное решение.
Если аргументы не представляют арифметической прогрессии и величины функции даны для нескольких произвольных значений аргументов х1, х2.....хп, то величина функции для всякого другого значения аргумента x вычисляется по формуле Лагранжа:
F(x) = U1{[(x — x2)(x — x3)... (x — xn)]/[(x — x2)(x1 — x3)... (x1 — xn)]} + U2{[(x — x1)(x — x3)... (x — xn)]/[(x2 — x1)(x2 — x3)... (x2 — xn)]} +... + Un{[(x — x1)(x — x2)... (x — xn-1)]/[(xn — x1)(xn — x2)... (xn — xn-1)]} +...
где U1 = F(x1), U2 = F(x2)... Un = F(xn).
Употребление этой формулы встречается при И. наблюдений.
Геометрическое значение И. заключается в проведении параболы высших степеней через ряд данных точек на плоскости. Чем число данных точек больше, тем проведенная через них парабола ближе к неизвестной кривой. Если положение точек определено лишь с известной степенью приближения (напр. из наблюдений), то от интерполяционной кривой требуется иногда не то, чтобы она прошла через все данные точки, а чтобы она заняла некоторое среднее положение, по возможности меньше уклоняясь в ту или другую сторону от этих точек.
Для функций от двух и более аргументов формулы И. значительно сложнее. Когда приходится пользоваться таблицами с двумя входами, то на практике прибегают к двум последовательным И. сперва по одному, а затем по другому аргументу.
В практических приложениях определение значения функции для аргумента, лежащего не между данными, а вне их, известно под названием экстраполирования и совершается по правилам И. с той лишь разницей, что некоторые разности приходится вычислять, считая число их ограниченным. Числовые результаты экстраполирования всегда менее благонадежны, чем результаты И. Литература см. Исчисление конечных разностей.
B. Витковский.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.

Игры ⚽ Поможем написать курсовую
Синонимы:

Полезное


Смотреть что такое "Интерполирование" в других словарях:

  • интерполирование — сущ., кол во синонимов: 1 • интерполяция (4) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Интерполирование — [interpolation] отыскание  промежуточной ( неизвестной) величины динамического ряда (например, некоторого элемента временной последовательности). И. часто осуществляется с помощью выровненного графика этого ряда, а также аналитически. Аналогичная …   Экономико-математический словарь

  • интерполирование — Отыскание промежуточной ( неизвестной) величины динамического ряда (например, некоторого элемента временной последовательности). И. часто осуществляется с помощью выровненного графика этого ряда, а также аналитически. Аналогичная процедура, если… …   Справочник технического переводчика

  • Интерполирование — О функции, см.: Интерполянт. Интерполяция  в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений. Многим из тех, кто сталкивается с научными и инженерными расчётами часто …   Википедия

  • ИНТЕРПОЛИРОВАНИЕ — ИНТЕРПОЛЯЦИЯ, ИНТЕРПОЛИРОВАНИЕ один из способов приближенного вычисления, когда по ряду величин данного математического выражения определяют промежуточные члены и т. образ. находят искомые неизвестные; 2) вставка в рукопись к. н. сочинения не… …   Словарь иностранных слов русского языка

  • ИНТЕРПОЛИРОВАНИЕ — в вычислительной математике способ приближенного или точного нахождения какой либо величины по известным отдельным значениям этой же или других величин, связанных с ней. На основе И. построен ряд приближенных методов решения математич. задач.… …   Математическая энциклопедия

  • ИНТЕРПОЛИРОВАНИЕ — интерполяция, в простейшем, классическом смысле конструктивное восстановление (быть может, приближенное) функции определенного класса по известным ее значениям или значениям ее производных в данных точках. Пусть даны n+l точек сегмента D=[ а, b] …   Математическая энциклопедия

  • Интерполирование с кратными узлами — Интерполирование с кратными узлами  задача о построении многочлена минимальной степени, принимающего в некоторых точках (узлах интерполяции) заданные значения, а также заданные значения производных до некоторого порядка. Показывается, что… …   Википедия

  • Интерполирование — ср. 1. процесс действия по несов. гл. интерполировать 2. Результат такого действия. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

  • интерполирование — интерпол ирование, я …   Русский орфографический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»