Межпланетная транспортная сеть

Межпланетная транспортная сеть
Стилизованное изображение межпланетной транспортной сети. Зеленая полоса — один из множества возможных путей, расположенных на поверхности светлозеленой трубы. Места, где зеленая полоса резко меняет траекторию — точки Лагранжа

Межпланетная транспортная сеть (англ. interplanetary transport network, ITN, Межпланетный Суперхайвей)[1] — система гравитационно определенных сложных орбит в Солнечной системе, которые требуют небольшого количества топлива. ITN использует точки Лагранжа в качестве точек, в которых возможны низкозатратные переходы между различными орбитами в космическом пространстве. Несмотря на то, что ITN позволяет совершать межпланетные перелеты с небольшими затратами энергетики, длительность полетов в десятки больше, чем у классических перелетов по орбитам Гомана — Ветчинкина.

Содержание

История

Ключевым в появлении идеи ITN были исследования траекторий вблизи точек Лагранжа. Первым таким исследованием была работа Анри Пуанкаре в 1890ых. Он заметил, что пути к этим точкам и от них почти всегда на некоторое время превращаются в орбиты вокруг точек.[2] Фактически, существует бесконечное количество траекторий, проходящих через точку, таких, что переход между ними не требует энергии. Если из нарисовать, то они образуют трубу, один из концов которой завершается орбитой у точки Лагранжа. Этот факт был установлен Charles C. Conley и Richard P. McGehee в 1960ых.[3] Теоретические работы Эдварда Белбрано (англ.)русск. (Jet Propulsion Laboratory) в 1994[4] проработали детали подобных низкозатратных переходных траекторий между Землей и Луной. В 1991 году, Hiten, первый японский лунный зонд, воспользовался такой траекторией для перелета к Луне. При этом имевшийся остаток топлива не позволял бы достигнуть орбиты Луны по классическим переходным орбитам. Начиная с 1997 Martin Lo, Shane D. Ross и другие написали серию статей о математических основах ITN и применили технику к разработке маршрута КА Genesis (полет на орбиту вокруг точки L1 системы Солнце-Земля с возвратом на Землю), а также для лунных и Юпитерианских миссий. Они назвали систему маршрутов Interplanetary Superhighway (IPS, Межпланетный Суперхайвей)[5][6]

Оказалось, что возможен простой переход между траекторией, ведущей к точке, и траекторией, ведущей от точки Лагранжа. Это происходит, так как орбита вокруг точки Лагранжа является нестабильной и любое тело рано или поздно должно сойти с такой орбиты. При проведении точных расчетов возможно проведение коррекции и выбор одного из многих путей, исходящих из точки Лагранжа. Многие из таких путей ведут к другим планетам или их лунам.[7] Это означает, что после достижения точки L2 системы Земля-Солнце, расположенной недалеко от планеты, возможен перелет к значительному количеству мест с небольшими дополнительными затратами топлива, либо вообще без них.

Такие переходные траектории являются настолько низкоэнергетическими, что позволяют достигнуть большинства точек в солнечной системе. Но в то же время, все эти перелетные орбиты являются чрезвычайно долгими и доступны только для автоматических межпланетных станций, но не для пилотируемых экспедиций.

Полеты по ITN уже использовались для достижения космическими аппаратами точки L1 системы Солнце-Земля, полезной для наблюдения за Солнцем, в том числе в миссии Genesis.[8] Обсерватория SOHO действует в L1 c 1996 года. Сеть также помогла лучше понять динамику солнечной системы;[9][10] например комета Шумейкеров — Леви 9 использовала такую траекторию для столкновения с Юпитером в 1994 году.[11][12]

Объяснение

В дополнение к орбитам вокруг точек Лагранжа, богатая динамика возникает от гравитационного взаимодействия более чем с одним крупным телом, в так называемых низкозатратных переходных траекториях.[3] Например, гравитационные поля системы Солнце-Земля-Луна позволяют посылать космические аппараты на большие расстояния с небольшими затратами топлива. В 1978 году был запущен КА ISEE-3 к одной из точек Лагранжа.[13] Часть его маневров была произведена с небольшими затратами топлива. После завершения основной миссии, ISEE-3 произвел пролеты через геомагнитный хвост, а затем пролет рядом с кометой. Миссия была переименована в International Cometary Explorer (ICE).

В 2000 году Мартином Ло (Martin Lo), Kathleen Howell и другими учеными JPL, с использованием математических моделей университета Purdue, была создана программа LTool[14][15], упрощающая расчеты траекторий, проходящих вблизи точек Лагранжа, в том числе траекторий из ITN. По сравнению с предыдущими методиками, на расчет траектории может уходить в 50 раз меньше времени. Эта разработка была номинирована на премию Discover Innovation Award.[16][17]

Траектория миссии Genesis, 2001—2003.

Первым использованием низкозатратной переходной траектории сети ITN было произведено японским лунным зондом Hiten в 1991.[18] Другой пример использования ITN — миссия NASA 2001—2003 годов Genesis, космический аппарат в которой более двух лет собирал материалы около точки L1 системы Солнце-Земля, затем посетил точку L2 и был возвращен на Землю. Программа 2003—2006 годов ЕКА SMART-1 также использовала низкозатратную переходную траекторию из сети ITN.

ITN основана на серии орбитальных траекторий, предсказанных теорией хаоса и ограниченной проблемой трёх гравитирующих тел, проходящих через нестабильные орбиты вокруг точек Лагранжа — точек, в которых гравитационные силы от нескольких объектов тел компенсируют центробежную силу тел. Для любых двух объектов, в которых один из них находится на орбите вокруг другого, например в случае пар звезда/планета, планета/луна, существует три таких точек, обозначаемых L1, L2, L3. Для системы Земля-Луна точка L1 расположена на линии между Землей и Луной. Для двух объектов, соотношение масс которых превышает 24.96, существует еще две стабильные точки: L4 и L5. Эти пять точек имеют низкие требования к delta-v (англ.)русск., и, похоже, являются наиболее экономными переходными орбитами, в том числе более экономными чем часто применяемые для орбитальной навигации переходные орбиты Гомана — Ветчинкина и биэллиптические орбиты.

Несмотря на компенсацию сил в этих точках, орбиты в L1, L2 и L3 не являются стабильными (неустойчивое равновесие). Если космический аппарат, находящийся в L1 точке системы Земля-Луна, получает небольшой импульс по направлению к Луне, то притяжение со стороны Луны становится больше и космический аппарат вытягивается из точки L1. Поскольку все участвующие тела находятся в движении, аппарат не столкнется сразу же с Луной, но перейдет на извилистую траекторию, уходящую в космическое пространство. Однако, существуют полустабильные орбиты вокруг точек Лагранжа L1, L2, L3 с длительностью пассивного существования в несколько месяцев. Орбиты вокруг точек L4 и L5 стабильны.


См. также

Примечания

  1. Ross, S. D. (2006). «The Interplanetary Transport Network». American Scientist 94: 230–237. DOI:10.1511/2006.59.994.
  2. Marsden, J. E. (2006). «New methods in celestial mechanics and mission design». Bull. Amer. Math. Soc. 43: 43–73. DOI:10.1090/S0273-0979-05-01085-2.
  3. 1 2 Conley, C. C. (1968). «Low energy transit orbits in the restricted three-body problem». SIAM Journal on Applied Mathematics 16: 732–746.
  4. Belbruno, E. 1994. The Dynamical Mechanism of Ballistic Lunar Capture Transfers in the Four-Body Problem from the Perspective of Invariant Manifolds and Hill’s Regions
  5. Lo, Martin W. and Ross, Shane D. 2001. The Lunar L1 Gateway: Portal to the Stars and Beyond, AIAA Space 2001 Conference, Albequerque, New Mexico.
  6. Игорь Афанасьев, Дмитрий Воронцов, Межпланетная эквилибристика // Журнал «Вокруг Света», Рубрика «Планетарий», № 8 (2815) 2008  (рус.)
  7. Ross, S.D., W.S. Koon, M.W. Lo and J.E. Marsden. 2003. Design of a Multi-Moon Orbiter. 13th AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico. Paper No. AAS 03-143.
  8. Lo, M. W., et al. 2001. Genesis Mission Design, The Journal of the Astronautical Sciences 49:169-184.
  9. Belbruno, E., and B.G. Marsden. 1997. Resonance Hopping in Comets. The Astronomical Journal 113:1433-1444
  10. W.S. Koon, M.W. Lo, J.E. Marsden, and S.D. Ross. 2000. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10:427-469
  11. Smith, D. L. 2002. Next Exit 0.5 Million Kilometers. Engineering and Science LXV(4):6-15
  12. Ross, S. D. 2003. Statistical theory of interior-exterior transition and collision probabilities for minor bodies in the solar system, Libration Point Orbits and Applications (Eds. G Gomez, M.W. Lo and J.J. Masdemont), World Scientific, pp. 637—652.
  13. Farquhar, R. W. (1980). «Trajectories and Orbital Maneuvers for the First Libration-Point Satellite». Journal of Guidance and Control 3: 549–554.
  14. Martin W. Lo and Roby S. Wilson The The LTool Package
  15. Martin Lo, LTool Version 1.0G delivery memorandum // JPL TRS 1992+, 29-Sep-2000
  16. Межпланетная лоция ждёт своих штурманов, Евгений Матусевич, Мембрана.ру 22 июля 2002
  17. INTERPLANETARY SUPERHIGHWAY MAKES SPACE TRAVEL SIMPLER, NASA July 17, 2002
  18. Belbruno E. Capture Dynamics and Chaotic Motions in Celestial Mechanics: With the Construction of Low Energy Transfers. — Princeton University Press, 2004. — ISBN 9780691094809

Ссылки



Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Межпланетная транспортная сеть" в других словарях:

  • Гравитационный манёвр — для ускорения объекта (гравитационная праща) Гравитационный манёвр для замедления объекта Гравитационный манёвр  разгон, замедление или изменение направления полёта космического а …   Википедия

  • Точки Лагранжа — и эквипотенциальные поверхности системы двух тел Точки Лагранжа, точки либрации (лат. librātiō  раскачивание) или L точки …   Википедия

  • Ареостационарная орбита — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • Апоцентр и перицентр — Перицентр …   Википедия

  • Геостационарная орбита — (ГСО)  круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси. В горизонтальной системе… …   Википедия

  • Геосинхронная орбита — (GSO)  орбита обращающегося вокруг Земли спутника, на которой период обращения равен звёздному периоду вращения Земли  23 час. 56 мин. 4,1 с. Частным случаем является круговая орбита, лежащая в плоскости земного экватора, для которой… …   Википедия

  • Геопереходная орбита — (ГПО)  орбита, являющаяся переходной между низкой опорной орбитой (НОО) (высота порядка 200 км) и геостационарной орбитой (ГСО) (35 786 км). В отличие от НОО и ГСО, которые в первом приближении являются круговыми, переходная орбита  это …   Википедия

  • Эфемерида — (др. греч. ἐφημερίς «на день, ежедневный» от др. греч. ἐπί «на» + ἡμέρα «день»), в астрономии  таблица небесных координат Солнца, Луны, планет и других астрономических объектов, вычислен …   Википедия

  • Эпоха (астрономия) — У этого термина существуют и другие значения, см. Эпоха. Эпоха в астрономии  момент времени, для которого определены астрономические координаты или элементы орбиты. Астрономические координаты могут быть пересчитаны из одной эпохи в другую с… …   Википедия

  • Солнечно-синхронная орбита — …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»