Стволовые клетки

Стволовые клетки
Эмбриональные стволовые клетки человека под микроскопом.

Стволовы́е кле́тки — недифференцированные (незрелые) клетки, имеющиеся во всех многоклеточных организмах. Стволовые клетки способны самообновляться, образуя новые стволовые клетки, делиться посредством митоза и дифференцироваться в специализированные клетки, то есть превращаться в клетки различных органов и тканей.

Развитие многоклеточных организмов начинается с одной стволовой клетки — зиготы. В результате многочисленных циклов деления и процесса дифференцировки образуются все виды клеток, характерные для данного биологического вида. В человеческом организме таких видов клеток более 220. Стволовые клетки сохраняются и функционируют и во взрослом организме, благодаря им может осуществляться обновление и восстановление тканей и органов. Тем не менее, в процессе старения организма их количество уменьшается.

В современной медицине стволовые клетки человека трансплантируют, то есть пересаживают в лечебных целях. Например, трансплантация гемопоэтических стволовых клеток производится для восстановления процесса гемопоэза (кроветворения) при лечении лейкозов и лимфом.

Содержание

Историческая справка

  • 1908: термин «стволовая клетка» (Stammzelle) был предложен к широкому использованию русским гистологом Александром Максимовым (1874—1928). Он описал и доказал методами своего времени гемопоэтические стволовые клетки, именно для них был введён термин.
  • 1960-е: Джозеф Альтман и Гопал Д. Дас (Массачусетский технологический институт) представили научное доказательство нейрогенеза во взрослом организме, постоянной активности стволовых клеток мозга. Их выводы противоречили догме Рамон-и-Кахаля о том, что нервные клетки не рождаются во взрослом организме, и не получили широкой огласки.
  • 1963: Эрнест Маккаллох и Джеймс Тилл продемонстрировали присутствие самообновляющихся клеток в костном мозге мыши.
  • 1968: доказана возможность восстановления кроветворения у реципиента после трансплантации костного мозга. Трансплантация костного мозга восьмилетнему мальчику приводит к исцелению от тяжёлой формы иммунодефицита. Донором стала сестра с совместимым набором лейкоцитарных антигенов (HLA).
  • 1970: Фриденштейн Александр Яковлевич выделил из костного мозга морских свинок, успешно культивировал и описал фибробластоподобные клетки, получившие в последующем название Мультипотентные мезенхимальные стромальные клетки.
  • 1978: в пуповинной крови обнаружены гемопоэтические стволовые клетки.
  • 1981: эмбриональные клетки мыши получены из эмбриобласта (внутренней клеточной массы бластоцисты) учёными Мартином Эвансом, Мэттью Кауфманом и, независимо от них, Гэйл Р. Мартин. Введение в обиход термина «эмбриональная стволовая клетка» приписывается Гэйл Мартин.
  • 1988: Элиан Глюкман провела первую успешную трансплантацию ГСК пуповинной крови пациенту, больному анемией Фанкони. Э. Глюкман доказала, что применение пуповинной крови эффективно и безопасно. С тех пор пуповинная кровь широко применяется в трансплантологии.
  • 1992: нейральные стволовые клетки получены in vitro. Разработаны протоколы их культивирования в виде нейросфер.
  • 1992: первая именная коллекция стволовых клеток. Профессор Дэвид Харрис заморозил стволовые клетки пуповинной крови своего первенца. Сегодня Дэвид Харрис — директор крупнейшего в мире банка стволовых клеток пуповинной крови.
  • 1987—1997: За 10 лет в 45 медицинских центрах мира проведено 143 трансплантации пуповинной крови.
  • 1997: в России проведена первая операция онкологическому больному по пересадке стволовых клеток пуповинной крови.
  • 1998: Джеймс Томсон и его сотрудники из Висконсинского университета в Мадисоне вывели первую линию человеческих ЭСК.
  • 1998: первая в мире трансплантация аутологичных стволовых клеток пуповинной крови девочке с нейробластомой (опухолью мозга). Общее число проведенных операций по трансплантации пуповинной крови к этому году превышает 600.
  • 1999: журнал Science признал открытие эмбриональных стволовых клеток третьим по значимости событием в биологии после расшифровки двойной спирали ДНК и проекта «Геном человека».
  • 2000: вышел ряд статей о пластичности стволовых клеток зрелого организма, то есть их способности дифференцироваться в клеточные компоненты различных тканей и органов.
  • 2003: журнал Национальной Академии Наук США (PNAS USA) опубликовал сообщение о том, что через 15 лет хранения в жидком азоте стволовые клетки пуповинной крови полностью сохраняют свои биологические свойства. С этого момента криогенное хранение стволовых клеток стало рассматриваться как «биологическая страховка». Мировая коллекция стволовых клеток, хранящихся в банках, достигла 72000 образцов. По данным на сентябрь 2003 г. в мире произведено уже 2592 трансплантаций стволовых клеток пуповинной крови, из них 1012 — взрослым пациентам.
  • За период с 1996 года по 2004 год были выполнены 392 трансплантации аутологичных (собственных) стволовых клеток.
  • 2005: учёные из Калифорнийского университета в Ирвайне произвели инъекцию нейральных стволовых клеток человека крысам с травматическим повреждением спинного мозга, и смогли частично восстановить способность крыс передвигаться.
  • 2005: перечень заболеваний, при лечении которых была успешно применена трансплантация стволовых клеток, достигает нескольких десятков. Основное внимание уделяется лечению злокачественных новообразований, различных форм лейкозов и других болезней крови. Появляются сообщения об успешной трансплантации стволовых клеток при заболеваниях сердечно-сосудистой и нервной систем. В различных исследовательских центрах проводятся исследования по применению стволовых клеток при лечении инфаркта миокарда и сердечной недостаточности. Разработаны международные протоколы лечения рассеянного склероза. Ищутся подходы к лечению инсульта, болезней Паркинсона и Альцгеймера.
  • Август 2006: журнал Cell публикует исследование Кадзутоси Такахаси и Синъя Яманака, посвящённое способу возвращения дифференцированных клеток в плюрипотентное состояние. Начинается эра индуцированных плюрипотентных стволовых клеток.
  • Январь 2007: исследователи из Университета Уэйк Форест (Северная Каролина, США) под руководством доктора Энтони Атала из Гарварда сообщили об открытии нового вида стволовых клеток, обнаруженных в амниотической жидкости (околоплодных водах). Они могут стать потенциальной заменой ЭСК в исследованиях и терапии.
  • Июнь 2007: три независимые исследовательские группы сообщили, что зрелые клетки кожи мышей могут быть репрограммированы в состояние ЭСК. В том же месяце учёный Шухрат Миталипов заявил о создании линии стволовых клеток примата путём терапевтического клонирования.
  • Ноябрь 2007: в журнале Cell опубликовано исследование Катсутоши Такагаши и Шинья Яманака «Индукция плюрипотентных стволовых клеток из фибробластов зрелого человека при определённых факторах», а в журнале Science вышла статья «Индуцированные плюрипотентные стволовые клетки, выведенные из соматических клеток человека» Джунинга Ю, в соавторстве с другими учёными из исследовательской группы Джеймса Томсона. Было доказано, что возможно индуцировать практически любую зрелую клетку человека и придать ей свойства стволовой, вследствие чего необходимость разрушения эмбрионов в лаборатории отпала, хотя предстоить определить риски канцерогенеза в связи с геном Мус и ретровирусным переносом генов.
  • Январь 2008: Роберт Ланза и его коллеги из Advanced Cell Technology и Калифорнийского университета в Сан-Франциско вывели первые ЭСК человека без разрушения эмбриона.
  • Январь 2008: посредством терапевтического клонирования культивированы клонированные бластоцисты человека.
  • Февраль 2008: плюрипотентные стволовые клетки выведены из печени и желудка мыши, эти индуцированные клетки ближе к эмбриональным, чем индуцированные стволовые клетки, выведенные ранее и они не канцерогенны. Кроме того, гены, необходимые для индуцирования плюрипотентных клеток нет необходимости помещать в определённую область, что способствует развитию невирусних технологий репрограммирования клеток.
  • Март 2008: впервые опубликовано исследование врачей из Института регенеративной медицины (Regenerative Sciences Institute), посвящённое успешной регенерации хряща в коленном суставе человека при использовании аутологичных зрелых МСК.
  • Октябрь 2008: Забине Конрад и её коллеги из Тюбингена (Германия) вывели плюрипотентные стволовые клетки из сперматогониальных клеток зрелого яичка человека путём культивирования in vitro с добавлением ФИЛ (фактора ингибирования (подавления) лейкемии).
  • 30 октября 2008: эмбрионоподобные стволовые клетки выведены из человеческого волоса.
  • 1 марта 2009: Андреаш Надь, Кэйсукэ Кадзи и их коллеги открыли способ выведения эмбрионоподобных стволовых клеток из обычных зрелых клеток с использованием инновационной технологии «обёртывания» для доставки специфических генов в клетки с целью репрограммирования без рисков, которые возникают при использовании вирусов. Помещение генов в клетку осуществляется при помощи электропорации.
  • 28 мая 2009: Ким Гвансу и его коллеги из Гарварда заявили о том, что им удалось разработать способ манипулирования клетками кожи для выведения индуцированных плюрипотентных стволовых клеток с учётом индивидуальной специфики пациента, утверждая, что это «окончательное решение проблемы стволовых клеток».
  • 2011: израильский учёный Инбар Фридрих Бен-Нун возглавил группу учёных, которая вывела первые стволовые клетки вымирающих видов животных. Это прорыв и благодаря ему можно спасти виды, которым грозит исчезновение.
  • 2012: Введение пациентам стволовых клеток, взятых из их собственного костного мозга через три или семь дней после инфаркта миокарда, является хотя и безопасным, но неэффективным методом лечения, таковы результаты клинического исследования, проведенного при поддержке Национального института здоровья США. Однако исследования, проведенные немецкими специалистами в отделении кардиологии в Гамбурге, показали положительные результаты в лечении сердечной недостаточности, но не инфаркта миокарда.[1]

Свойства

Все стволовые клетки обладают двумя неотъемлемыми свойствами:

  • Самообновление, то есть способность сохранять неизменный фенотип после деления (без дифференцировки).
  • Потентность (дифференцирующий потенциал), или способность давать потомство в виде специализированных типов клеток.

Самообновление

Существуют два механизма, поддерживающих популяцию стволовых клеток в организме:

  1. Асимметричное деление, при котором продуцируется одна и та же пара клеток (одна стволовая клетка и одна дифференцированная клетка).
  2. Стохастическое деление: одна стволовая клетка делится на две более специализированных.

Дифференцирующий потенциал

Дифференцирующий потенциал, или потентность, стволовых клеток — это способность производить определенное количество разных типов клеток. В соответствии с потентностью стволовые клетки делятся на следующие группы:

  • Тотипотентные (омнипотентные) стволовые клетки могут дифференцироваться в клетки эмбриональных и экстраэмбриональных тканей, организованные в виде трехмерных связанных структур (тканей, органов, систем органов, организма). Такие клетки могут дать начало полноценному жизнеспособному организму. К ним относится оплодотворённая яйцеклетка, или зигота. Клетки, образованные при первых нескольких циклах деления зиготы, также являются тотипотентными у большинства биологических видов. Однако к ним не относятся, например, круглые черви, зигота которых утрачивает тотипотентность при первом делении. У некоторых организмов дифференцированные клетки также могут обретать тотипотентность. Так, срезанную часть растения можно использовать для выращивания нового организма именно благодаря этому свойству.
  • Плюрипотентные стволовые клетки являются потомками тотипотентных и могут давать начало практически всем тканям и органам, за исключением экстраэмбриональных тканей (например, плаценты). Из этих стволовых клеток развиваются три зародышевых листка: эктодерма, мезодерма и энтодерма.
  • Мультипотентные стволовые клетки порождают клетки разных такней, но многообразие их видов ограничено пределами одного зародышевого листка.

Эктодерма даёт начало нервной системе, органам чувств, переднему и заднему отделам кишечной трубки, кожному эпителию. Из мезодермы формируются хрящевой и костный скелет, кровеносные сосуды, почки и мышцы. Из энтодермы — в зависимости от биологического вида — образуются различные органы, ответственные за дыхание и пищеварение. У человека это — слизистая оболочка кишечника, а также печень, поджелудочная железа и лёгкие.

  • Олигопотентные клетки могут дифференцироваться лишь в некоторые, близкие по свойствам, типы клеток. К ним, например, относятся клетки лимфоидного и миелоидного рядов, участвующие в процессе кроветворения.
  • Унипотентные клетки (клетки-предшественницы, бластные клетки) — незрелые клетки, которые, строго говоря, уже не являются стволовыми, так как могут производить лишь один тип клеток. Они способны к многократному самовоспроизведению, что делает их долговременным источником клеток одного конкретного типа и отличает от нестволовых. Однако их способность к самовоспроизведению ограничена определённым количеством делений, что также отличает их от истинно стволовых клеток. К клеткам-предшественницам относятся, к примеру, некоторые из миосателлитоцитов, участвующих в образовании скелетной и мышечной тканей.

Классификация

Стволовые клетки можно разделить на три основные группы в зависимости от источника их получения: эмбриональные, фетальные и постнатальные (стволовые клетки взрослого организма).

Эмбриональные стволовые клетки

Эмбриональные стволовые клетки (ЭСК) образуют внутреннюю клеточную массу (ВКМ), или эмбриобласт, на ранней стадии развития эмбриона. Они являются плюрипотентными. Важный плюс ЭСК состоит в том, что они не экспрессируют HLA (human leucocyte antigens), то есть не вырабатывают антигены тканевой совместимости. Каждый человек обладает уникальным набором этих антигенов, и их несовпадение у донора и реципиента является важнейшей причиной несовместимости при трансплантации. Соответственно, шанс того, что донорские эмбриональные клетки будут отторгнуты организмом реципиента очень невысок. При пересадке иммунодефицитным животным эмбриональные стволовые клетки способны образовывать опухоли сложного (многотканевого) строения — тератомы, некоторые из них могут стать злокачественными. Достоверных данных, о том как ведут себя эти клетки в иммунокомпетентном организме, например, в организме человека, нет. Вместе с тем, следует отметить, что клинические испытания с применением дифференцированных дериватов (производных клеток) ЭСК уже начаты. Для получения ЭСК в лабораторных условиях приходится разрушать бластоцисту, чтобы выделить ВКМ, то есть разрушать эмбрион. Поэтому исследователи предпочитают работать не с эмбрионами непосредственно, а с готовыми, ранее выделенными линиями ЭСК.

Клинические исследования с использованием ЭСК подвергаются особой этической экспертизе. Во многих странах исследования ЭСК ограничены законодательством.

Одним из главных недостатков ЭСК является невозможность использования аутогенного, то есть собственного материала, при трансплантации, поскольку выделение ЭСК из эмбриона несовместимо с его дальнейшим развитием.

Фетальные стволовые клетки

Фетальные стволовые клетки получают из плодного материала после аборта (обычно срок гестации, то есть внутриутробного развития плода, составляет 9—12 недель). Естественно, изучение и использование такого биоматериала также порождает этические проблемы. В некоторых странах, например, на Украине и в Великобритании, продолжаются работы по их изучению и клиническому применению. К примеру, британская компания ReNeuron исследует возможности использования фетальных стволовых клеток для терапии инсульта.

Постнатальные стволовые клетки

Несмотря на то, что стволовые клетки зрелого организма обладают меньшей потентностью в сравнении с эмбриональными и фетальными стволовыми клетками, то есть могут порождать меньшее количество различных типов клеток, этический аспект их исследования и применения не вызывает серьёзной полемики. Кроме того, возможность использования аутогенного материала обеспечивает эффективность и безопасность лечения. Стволовые клетки взрослого организма можно подразделить на три основных группы: гемопоэтические (кроветворные), мультипотентные мезенхимальные (стромальные) и тканеспецифичные клетки-предшественницы. Иногда в отдельную группу выделяют клетки пуповинной крови, поскольку они являются наименее дифференцированными из всех клеток зрелого организма, то есть обладают наибольшей потентностью. Пуповинная кровь в основном содержит гемопоэтические стволовые клетки, а также мультипотентные мезенхимальные, но в ней присутствуют и другие уникальные разновидности стволовых клеток, при определённых условиях способные дифференцироваться в клетки различных органов и тканей.

Гемопоэтические стволовые клетки

Гемопоэтические стволовые клетки (ГСК) — мультипотентные стволовые клетки, дающие начало всем клеткам крови миелоидного (моноциты, макрофаги, нейтрофилы, базофилы, эозинофилы, эритроциты, мегакариоциты и тромбоциты, дендритные клетки) и лимфоидного рядов (Т-лимфоциты, В-лимфоциты и естественные киллеры). Определение гемопоэтических клеток было основательно пересмотрено в течение последних 20 лет. Гемопоэтическая ткань содержит клетки с долгосрочными и краткосрочными возможностями к регенерации, включая мультипотентные, олигопотентные и клетки-предшественники. Миелоидная ткань содержит одну ГСК на 10 000 клеток. ГСК являются неоднородной популяцией. Различают три субпопуляции ГСК, в соответствии с пропорциональным отношением лимфоидного потомства к миелоидному (Л/M). У миелоидно ориентированных ГСК низкое Л/М соотношение (>0, <3), у лимфоидно ориентированных — высокое (>10). Третья группа состоит из «сбалансированных» ГСК, для которых 3 ≤ Л/M ≤ 10. В настоящее время активно исследуются свойства различных групп ГСК, однако промежуточные результаты показывают, что только миелоидно ориентированные и «сбалансированные» ГСК способны к продолжительному самовоспроизведению. Кроме того, эксперименты по трансплантации показали, что каждая группа ГСК преимущественно воссоздаёт свой тип клеток крови, что позволяет предположить наличие наследуемой эпигенетической программы для каждой субпопуляции.

Популяция ГСК формируется во время эмбриогенеза, то есть эмбрионального развития. Доказано, что у млекопитающих первые ГСК обнаруживаются в областях мезодермы, называемых аорта, гонада и мезонефрос, до формирования костного мозга популяция расширяется в фетальной печени. Такие исследования способствуют пониманию механизмов, ответственных за генезис (формирование) и расширение популяции ГСК, и, соответственно, открытию биологических и химических агентов (действующих веществ), которые в конечном счёте могут быть использованы для культивации ГСК in vitro.

До начала использования пуповинной крови основным источником ГСК считался костный мозг. Этот источник и сегодня достаточно широко используется в трансплантологии. ГСК располагаются в костном мозге у взрослых, включая бедренные кости, рёбра, мобилизации грудины и другие кости. Клетки могут быть получены непосредственно из бедра при помощи иглы и шприца, или из крови после предварительной обработки цитокинами, включая G-CSF (гранулоцитарный колониестимулирующий фактор), способствующий высвобождению клеток из костного мозга.

Вторым, наиболее важным и перспективным источником ГСК является пуповинная кровь. Концентрация ГСК в пуповинной крови в десять раз выше, чем в костном мозге. Кроме того, у этого источника есть ряд преимуществ. Важнейшие из них:

  • Возраст. Пуповинная кровь собирается на самом раннем этапе жизни организма. ГСК пуповинной крови максимально активны, поскольку не подвергались негативному воздействию внешней среды (инфекционные заболевания, нездоровое питание и т. д.). ГСК пуповинной крови способны создать большую клеточную популяцию в короткий срок.
  • Совместимость. Использование аутологичного материала, то есть собственной пуповинной крови гарантирует 100%-ную совместимость. Совместимость с братьями и сёстрами составляет до 25 %, как правило, возможно также использование пуповинной крови ребёнка для лечения других близких родственников. Для сравнения, вероятность нахождения подходящего донора стволовых клеток — от 1:1000 до 1:1000 000.

Мультипотентные мезенхимальные стромальные клетки

Мультипотентные мезенхимальные стромальные клетки (ММСК) — мультипотентные стволовые клетки, способные дифференцироваться в остеобласты (клетки костной ткани), хондроциты (хрящевые клетки) и адипоциты (жировые клетки).

Предшественниками ММСК в эмбриогенный период развития являются мезенхимальные стволовые клетки (МСК). Они могут быть обнаружены в местах распространения мезенхимы, то есть зародышевой соединительной ткани.

Основным источником ММСК является костный мозг. Кроме того, они обнаружены в жировой ткани и ряде других тканей с хорошим кровоснабжением. Существует ряд доказательств того, что естественная тканевая ниша ММСК расположена периваскулярно — вокруг кровеносных сосудов. Кроме того, ММСК были обнаружены в пульпе молочных зубов, амниотической (околоплодной) жидкости, пуповинной крови и вартоновом студне. Эти источники исследуются, но редко применяются на практике. Например, выделение молодых ММСК из вартонова студня представляет собой крайне трудоёмкий процесс, поскольку клетки в нём также располагаются периваскулярно. В 2005—2006 годах специалисты по ММСК официально определили ряд параметров, которым должны соответствовать клетки, чтобы отнести их к популяции ММСК. Были опубликованы статьи, в которых представлен иммунофенотип ММСК и направления ортодоксальной дифференцировки. К ним относится дифференцировка в клетки костной, жировой и хрящевой тканей. Был проведён ряд экспериментов по дифференцировке ММСК в нейроноподобные клетки, но исследователи по-прежнему сомневаются, что полученные нейроны являются функциональными. Эксперименты также проводятся в области дифференцировки ММСК в миоциты — клетки мышечной ткани. Важнейшей и наиболее перспективной областью клинического применения ММСК является котрансплантация совместно с ГСК в целях улучшения приживления образца костного мозга или стволовых клеток пуповинной крови. Многочисленные исследования показали, что ММСК человека могут избегать отторжения при трансплантации, вступать во взаимодействие с дендритными клетками и Т-лимфоцитами и создавать иммуносупрессивную микросреду посредством выработки цитокинов. Было доказано, что иммуномодулирующие функции ММСК человека повышаются, когда их пересаживают в воспалённую среду с повышенным уровнем гамма-интерферона. Другие исследования противоречат этим выводам, что обусловлено гетерогенной природой изолированных МСК и значительными различиями между ними, в зависимости от способа культивирования.

МСК могут быть активированы в случае необходимости. Однако эффективность их использования относительно низка. Так, к примеру, повреждение мышц даже при трансплантации МСК заживает очень медленно. В настоящее время проводятся исследования по активации МСК. Ранее проведённые исследования по внутривенной трансплантации МСК показали, что этот способ трансплантации часто приводит к кризу отторжения и сепсису. Сегодня признано, что заболевания периферических тканей, например, воспаление кишечника лучше лечить не трансплантацией, а методами, повышающими локальную концентрацию МСК.

Тканеспецифичные прогениторные клетки

Тканеспецифичные прогениторные клетки (клетки-предшественницы) — малодифференцированные клетки, которые располагаются в различных тканях и органах и отвечают за обновление их клеточной популяции, то есть замещают погибшие клетки. К ним, например, относятся миосателлитоциты (предшественники мышечных волокон), клетки-предшественницы лимфо- и миелопоэза. Эти клетки являются олиго- и унипотентными и их главное отличие от других стволовых клеток в том, что клетки-предшественницы могут делиться лишь определённое количество раз, в то время как другие стволовые клетки способны к неограниченному самообновлению. Поэтому их принадлежность к истинно стволовым клеткам подвергается сомнению. Отдельно исследуются нейральные стволовые клетки, которые также относятся к группе тканеспецифичных. Они дифференцируются в процессе развития эмбриона и в плодный период, в результате чего происходит формирование всех нервных структур будущего взрослого организма, включая центральную и периферическую нервные системы. Эти клетки были обнаружены и в ЦНС взрослого организма, в частности, в субэпендимальной зоне, в гиппокампе, обонятельном мозге и т. д. Несмотря на то, что большая часть погибших нейронов не замещается, процесс нейрогенеза во взрослой ЦНС всё-таки возможен за счёт нейральных стволовых клеток, то есть популяция нейронов может «восстанавливаться», однако это происходит в таком объёме, что не сказывается существенно на исходах патологических процессов.

Характеристики эмбриональных стволовых клеток

  1. Плюрипотентность — способность образовывать любой из примерно 350 типов клеток взрослого организма (у млекопитающих)[источник не указан 541 день];
  2. Хоуминг — способность стволовых клеток, при введении их в организм, находить зону повреждения и фиксироваться там, исполняя утраченную функцию;
  3. Тотипотентность - способность дифференцироваться в целостный организм (11 дней после оплодотворения);
  4. Факторы, которые определяют уникальность стволовых клеток, находятся не в ядре, а в цитоплазме. Это избыток мРНК всех 3 тысяч генов[источник не указан 632 дня], которые отвечают за раннее развитие зародыша;
  5. Теломеразная активность. При каждой репликации часть теломер утрачивается (см. Предел Хейфлика). В стволовых, половых и опухолевых клетках есть теломеразная активность, концы их хромосом надстраиваются, то есть эти клетки способны проходить потенциально бесконечное количество клеточных делений, они бессмертны.

Стволовые клетки и рак

В 2012 году для глиобластомы, папилломы и карциномы кожи и аденомы кишечника было доказано существование ограниченного пула особых раковых стволовых клеток, которые являются предшественниками других клеток, и именно они отвечают за образование и рост опухоли[2].

Интересные факты

  • Стволовых клеток в нашем организме очень мало:
  • Стволовые клетки растений также называют камбиальными (от лат. cambium — обмен, смена).
  • Стволовые клетки способны к асимметричному делению, при котором одна из дочерних клеток остается стволовой, а другая дает начало специализированным клеткам того или иного типа[3].

Использование в медицине

В России

Распоряжением Правительства РФ от 23 декабря 2009 г. № 2063-р Минздравосцразвития России, Минпромторгу России и Минобрнауки России поручено до конца 2010 г. разработать и представить на рассмотрение в Государственную думу РФ проект закона «О применении биомедицинских технологий в медицинской практике», регламентирующего медицинское применение стволовых клеток, как одной из биомедицинских технологий. Поскольку законопроект вызвал[4] возмущение общественности и ученых, он был отправлен на доработку и на данный момент не принят.

1 июля 2010 года Федеральная служба по надзору в сфере здравоохранения и социального развития выдала первое разрешение на применение новой медицинской технологии ФС № 2010/255 (лечение собственными стволовыми клетками).

3 февраля 2011 года Федеральная службой по надзору в сфере здравоохранения и социального развития выдала разрешение на применение новой медицинской технологии ФС № 2011/002 (лечение донорскими стволовыми клетками следующих патологий: возрастные изменения кожи лица второй или третьей степени, наличие раневого дефекта кожи, трофической язвы, лечение аллопеции, атрофическое поражение кожи, в том числе атрофические полосы (striae), ожоги, диабетической стопы)

На Украине

Сегодня на Украине разрешено проведение клинических испытаний (Приказ МЗ Украины № 630 «О проведении клинических испытаний стволовых клеток», 2007 г.[5][6]) по лечению следующих патологий с применением стволовых клеток[источник не указан 591 день]: панкреонекроз, цирроз печени[нет в источнике], гепатиты, ожоговая болезнь, сахарный диабет 2-го типа, рассеянный склероз, критическая ишемия нижних конечностей.

См. также

Примечания

Ссылки



Wikimedia Foundation. 2010.

См. также в других словарях:

  • СТВОЛОВЫЕ КЛЕТКИ — камбиальные клетки, родоначальные клетки в обновляющихся тканях животных (кроветворной и лимфоидной, в эпидермисе, покрове пищеварит. тракта и нек рых других). Размножение и дифференцировка С. к. восстанавливают потери спе циализир. клеток после… …   Биологический энциклопедический словарь

  • СТВОЛОВЫЕ КЛЕТКИ — (камбиальные клетки) входят в состав обновляющихся тканей животных и человека. Могут развиваться в различные клетки, напр. в кроветворной ткани млекопитающих в эритроциты, тромбоциты и лейкоциты. Обеспечивают восстановление ткани при гибели части …   Большой Энциклопедический словарь

  • стволовые клетки — (камбиальные клетки), входят в состав обновляющихся тканей животных и человека. Могут развиваться в различные клетки, например в кроветворной ткани млекопитающих  в эритроциты, тромбоциты и лейкоциты. Обеспечивают восстановление ткани при гибели… …   Энциклопедический словарь

  • стволовые клетки — stem cells стволовые клетки. Митотически активные соматические клетки, в результате деления которых происходит замещение погибших клеток в многоклеточном организме, например, С.к. костного мозга млекопитающих, дифференцирующиеся в клетки… …   Молекулярная биология и генетика. Толковый словарь.

  • Стволовые клетки —         клетки, входящие в состав постоянно обновляющихся тканей животных и способные развиваться в различных направлениях, в пределах тканевой дифференцировки (См. Дифференцировка). Подробнее см. Камбиальные клетки …   Большая советская энциклопедия

  • СТВОЛОВЫЕ КЛЕТКИ — (камбиальные клетки), входят в состав обновляющихся тканей животных и человека. Могут развиваться в разл. клетки, напр. в кроветворной ткани млекопитающих в эритроциты, тромбоциты и лейкоциты. Обеспечивают восстановление ткани при гибели части… …   Естествознание. Энциклопедический словарь

  • Индуцированные стволовые клетки — Индуцированные стволовые клетки  cтволовые клетки, полученные из каких либо иных (cоматических, репродуктивных или плюрипотентных) клеток путем эпигенетического перепрограммирования. В зависимости от степени дедифференцировки клетки при… …   Википедия

  • Эмбриональные стволовые клетки — Данные в этой статье приведены по состоянию на 2010. Вы можете помочь …   Википедия

  • Гемопоэтические стволовые клетки — Схема кроветворения Гемопоэтические стволовые клетки  клетки, из которых затем в процессе пролиферации и дифференцир …   Википедия

  • камбиальные клетки — 1) то же, что стволовые клетки. 2) Клетки камбия. * * * КАМБИАЛЬНЫЕ КЛЕТКИ КАМБИАЛЬНЫЕ КЛЕТКИ, 1) то же, что стволовые клетки (см. СТВОЛОВЫЕ КЛЕТКИ). 2) Клетки камбия (см. КАМБИЙ) …   Энциклопедический словарь

Книги

Другие книги по запросу «Стволовые клетки» >>