Грина формула это:

Грина формула
Гри́на фо́рмула
связывает двойной интеграл по некоторой плоской области с криволинейным интегралом по границе этой области. Предложена Дж. Грином (1828).
* * *
ГРИНА ФОРМУЛА
ГРИ́НА ФО́РМУЛА, связывает двойной интеграл по некоторой плоской области с криволинейным интегралом по границе этой области. Предложена Дж. Грином (1828).

Энциклопедический словарь. 2009.

Смотреть что такое "Грина формула" в других словарях:

  • ГРИНА ФОРМУЛА — связывает двойной интеграл по некоторой плоской области с криволинейным интегралом по границе этой области. Предложена Дж. Грином (1828) …   Большой Энциклопедический словарь

  • ГРИНА ФОРМУЛА — связывает двойной интеграл по нек рой плоской области с криволинейным интегралом по границе этой области. Предложена Дж. Грином (1828) …   Естествознание. Энциклопедический словарь

  • Формула Грина — Теорема Грина устанавливает связь между криволинейным интегралом по замкнутому контуру C и двойным интегралом по области D, ограниченной этим контуром. Фактически, эта теорема является частным случаем более общей теоремы Стокса. Теорема названа в …   Википедия

  • ГРИНА ФОРМУЛЫ — формулы интегрального исчисления функций многих переменных, связывающие значения га кратного интеграла по области D n мерного евклидова пространства и кратного интеграла по кусочно гладкой границе этой области. Г. ф. получаются интегрированием по …   Математическая энциклопедия

  • Формула Стокса — Теорема Стокса одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса. Содержание 1 Общая формулировка 2… …   Википедия

  • ГРИНА ФУНКЦИЯ — функция, связанная с интегральным представлением решений краевых задач для дифференциальных уравнений. Г. ф. краевой задачи для линейного дифференциального уравнения фундаментальное решение уравнения, удовлетворяющее однородным краевым условиям.… …   Математическая энциклопедия

  • Формула Остроградского — Формула Остроградского  формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью: то есть интеграл от дивергенции векторного поля ,… …   Википедия

  • Формула Гаусса—Остроградского — Формула Остроградского  математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью: то есть интеграл от дивергенции векторного… …   Википедия

  • Грина формулы —         формулы интегрального исчисления, связывающие между собой интегралы различных типов. Простейшая из них связывает двойной интеграл по области G с криволинейным интегралом по границе С области G и имеет вид:                  Эта формула… …   Большая советская энциклопедия

  • СТОКСА ФОРМУЛА — 1) формула, выражающая связь между потоком векторного поля через двумерное ориентированное многообразие и циркуляцию этого поля по соответствующим образом ориентированному краю этого многообразия. Пусть S ориентированная кусочно гладкая… …   Математическая энциклопедия

Книги

Другие книги по запросу «Грина формула» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»