Грина формулы это:

Грина формулы
        формулы интегрального исчисления, связывающие между собой интегралы различных типов. Простейшая из них связывает двойной интеграл по области G с криволинейным интегралом по границе С области G и имеет вид:
        
        Эта формула была известна ещё Л. Эйлеру (1771). Две другие впервые опубликованы Джорджем Грином в 1828 в связи с исследованиями по теории потенциала:
         (первая Г. ф., или предварительная Г. ф.) и
        (первая Г. ф., или предварительная Г. ф.) и
        
        Здесь G — область трёхмерного пространства, поверхность S — граница этой области, Δu = ∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2 (аналогично Δv) — оператор Лапласа, ∂u/∂n, ∂v/∂n — производные по направлению внешней нормали к S.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Грина формулы" в других словарях:

  • ГРИНА ФОРМУЛЫ — формулы интегрального исчисления функций многих переменных, связывающие значения га кратного интеграла по области D n мерного евклидова пространства и кратного интеграла по кусочно гладкой границе этой области. Г. ф. получаются интегрированием по …   Математическая энциклопедия

  • Формулы Грина-Кубо — Формулы Грина Кубо, соотношения Грина Кубо связывают кинетические коэффициенты (коэффициенты переноса) линейных диссипативных процессов с временными корреляционными функциями соответствующих потоков. Названы по именам предложивших их М. Грина… …   Википедия

  • Формулы Грина — Кубо или соотношения Грина Кубо связывают кинетические коэффициенты (коэффициенты переноса) линейных диссипативных процессов с временными корреляционными функциями соответствующих потоков. Названы по именам предложивших их М. Грина (Melville S.… …   Википедия

  • ГРИНА - КУБО ФОРМУЛЫ — выражают кинетические коэффициенты линейных диссипативных процессов (диффузии, вязкости, теплопроводности) через временные корреляционные функции потоков (вещества, импульса, тепла). Установлены в 1952 54 M. Грином (M. Green) с помощью теории… …   Физическая энциклопедия

  • ГРИНА ФУНКЦИЯ — функция, связанная с интегральным представлением решений краевых задач для дифференциальных уравнений. Г. ф. краевой задачи для линейного дифференциального уравнения фундаментальное решение уравнения, удовлетворяющее однородным краевым условиям.… …   Математическая энциклопедия

  • Формула Грина — Теорема Грина устанавливает связь между криволинейным интегралом по замкнутому контуру C и двойным интегралом по области D, ограниченной этим контуром. Фактически, эта теорема является частным случаем более общей теоремы Стокса. Теорема названа в …   Википедия

  • КУБО ФОРМУЛЫ — выражает линейную реакцию статистической системы на переменное внешнее возмущение. К. ф. позволяют выразить кинетические коэффициенты через равновесные временные корреляционные функции потоков. Установлены Р. Кубо (R. Kubo) в 1957. При выводе К.… …   Физическая энциклопедия

  • РЕДУКЦИОННЫЕ ФОРМУЛЫ — правила вычисления элементов матрицы рассеяния (S) в аксиоматической квантовой теории поля (АКТП). Конкретный вид Р. ф. зависит от выбора исходных объектов в конкретном варианте теории. Наиб. прост этот вид для АКТП в формулировке Боголюбова, где …   Физическая энциклопедия

  • Грин — I (псевдоним; настоящая фамилия Гриневский)         Александр Степанович [11(23).8.1880, г. Слободской бывшей Вятской губернии, 8.7.1932, Старый Крым], русский советский писатель. Родился в семье ссыльного поляка повстанца 1863. Скитался по… …   Большая советская энциклопедия

  • Ротор (математика) — У этого термина существуют и другие значения, см. Ротор. Ротор, или вихрь  векторный дифференциальный оператор над векторным полем. Обозначается (в русскоязычной[1] литературе) или (в англоязычной литературе), а также как векторное умножение …   Википедия

Книги

Другие книги по запросу «Грина формулы» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»