ТОПОЛОГИЧЕСКОЕ ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ

ТОПОЛОГИЧЕСКОЕ ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ

локально выпуклых пространств E1 и Е 2 - локально выпуклое пространство, обладающее свойством универсальности по отношению к заданным на билинейным операторам с нек-рым условием непрерывности. Точнее, пусть - нек-рый класс локально выпуклых пространств и для каждого задано подмножество Т(F)множества рездельно непрерывных билинейных операторов из в F. Тогда Т. т. п. E1 и Е 2 (относительно класса Т(F))наз. локально выпуклое пространство вместе с оператором обладающее следующим свойством: для любого существует единственный непрерывный линейный оператор такой, что Таким образом, если ситуация позволяет говорить о функторе то определено как представляющий объект этого функтора.
Во всех известных (1985) примерах содержит поле комплексных чисел а содержит все билинейные функционалы вида переводящие ( х, у )в i(x) g(y). В этом случае, если Т. т. п. существует, то в есть плотное подпространство, к-рое можно отождествить с пространством алгебраического тензорного произведения;при этом
Если состоит из всех раздельно (соответственно, совместно) непрерывных билинейных операторов, то Т. т. п. наз. индуктивным (соответственно, проективным). Наиболее важно проективное Т. т. п. Пусть { р i} - определяющие семейства полунорм в Е i, i=l, 2; через p обозначается топология в определенная семейством полунорм

Тогда если - класс всех, соответственно, всех полных локально выпуклых пространств, то проективное Т. т. п. E1 и Е 2 существует и его локально выпуклое пространство есть с топологией соответственно, его пополнение.
Если Ei - банаховы пространства с нормами р i, i=l, 2, то - норма в пополнение но к-рой обозначается через Элементы имеютдля каждого представление

где

Если снабдить более слабой, чем топологией с помощью семейства полунорм

где Vи W - поляры единичных шаров относительно р1 и р 2, то возникает Т. т. п., иногда наз. слабым. Локально выпуклые пространства E1,обладающие тем свойством, что для любого Е 2 обе топологии в совпадают, образуют важный класс ядерных пространств.
Проективное Т. т. п. связано с понятием свойства аппроксимации: локально выпуклое пространство Е 1 обладает свойством аппроксимации, если для каждого предкомпактного множества и окрестности нуля Uсуществует непрерывный оператор конечного ранга такой, что для всех Все ядерные пространства обладают свойством аппроксимации. Банахово пространство Е 1 обладает свойством аппроксимации тогда и только тогда, когда для любого банахова пространства Е 2 оператор однозначно определенный равенством имеет нулевое ядро. Построено [3] сепарабельное банахово пространство без свойства аппроксимации (и тем самым доказано существование банаховых пространств без базиса Шаудера, поскольку последние всегда имеют свойство аппроксимации,- т. о. отрицательно решена т. н. лпроблема базиса


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "ТОПОЛОГИЧЕСКОЕ ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ" в других словарях:

  • Прямое произведение — Прямое или декартово произведение  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих… …   Википедия

  • Декартово произведение — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • Декартово произведение групп — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • Декартово произведение множеств — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • Прямое произведение графов — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • Прямое произведение групп — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • Прямое произведение множеств — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

  • ЯДЕРНОЕ ПРОСТРАНСТВО — локально выпуклое пространство, у к рого все линейные непрерывные отображения в каждое банахово пространство являются ядерными операторами. Понятие Я. п. возникло [1] при исследовании вопроса о том, для каких пространств справедливы аналоги… …   Математическая энциклопедия

  • БАНАХОВ МОДУЛЬ — (левый) над банаховой алгеброй А банахово пространство X вместе с непрерывным билинейным оператором т: , задающим на структуру левого модуля над Ав алгеб раич. смысле. Аналогично определяется правый Б. м. и банахов бимодуль над А. Морфизмом двух… …   Математическая энциклопедия

  • Функциональный анализ (математ.) — Функциональный анализ, часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание методов… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»