МИНКОВСКОГО НЕРАВЕНСТВО

МИНКОВСКОГО НЕРАВЕНСТВО

- 1) Собственно М. н.: если действительные числа при i=l, . . ., n и р>1, то

Выведено Г. Минковским [1]. При неравенство заменяется на противоположное (для р<0 следует считать ). В каждом из этих случаев равенство имеет место тогда и только тогда, когда строки и пропорциональны. При р=2 М. н. наз. неравенством треугольника. М. н. допускает обобщения в различных направлениях (они также носят названия неравенств Минковского ). Ниже приводятся нек-рые из них.

2) М. н. для сумм. Пусть для i=1, ... . . ., пи j = 1, . . ., ти р>1, тогда

Знак неравенства меняется на обратный при р<1, и для полагается . В каждом из этих случаев равенство имеет место тогда и только тогда, когда строки пропорциональны. Существуют также обобщения неравенств (1) на кратные и бесконечные суммы. Однако при использовании предельных процессов особого внимания требует формулировка случаев возможного равенства (см. [2]).

Неравенства (1) и (2) однородны относительно , и потому они имеют аналоги для различных средних, напр., если где то

подробнее см. в [2].

3) М. н. для интегралов аналогично неравенству (2) и имеет место опять же вследствие однородности относительно . Пусть - интегрируемые функции в нек-рой области относительно элемента объема dV, тогда при р>1

Естественно получается обобщение неравенства (3) для большего числа функций. Дальнейшее обобщение: если k>1, то

причем равенство имеет место лишь в случае

4) Другие неравенства типа М. н.:

а) для произведений: если ,то

б) неравенство Малера: пусть F(x)- обобщенная норма в - ее полярная функция. Тогда

где (Х, Х) - скалярное произведение;

в) для определителей: если А, В- неотрицательные эрмитовы матрицы над , то

5) Наконец, с именем Г. Минковского связываются и др. неравенства, в особенности в выпуклом анализе и теории чисел, напр. Брунна- Минковского теорема.

Лит.:[1] Minkowski H., Geometrie uer Zahlen, 1, Lpz., 1896, § 115-17; [2] Xарди Г. Г., Литтльвуд Д ж., Полна Г., Неравенства, пер. с англ., М., 1948; [3] Беккен6ах Э. Ф., Беллман Р., Неравенства, пер. с англ., М., 1965; [4] Маркус М., Минк X., Обзор по теории матриц и матричных неравенств, пер. с англ., М., 1972.

М. И. Войцеховский.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "МИНКОВСКОГО НЕРАВЕНСТВО" в других словарях:

  • Минковского неравенство —         неравенство вида                  где ak и bk (k = 1, 2,..., n) неотрицательные числа и r > 1. М. н. имеет аналоги для бесконечных рядов и интегралов; оно было установлено Г. Минковским (См. Минковский) в 1896 и выражает тот факт, что в n …   Большая советская энциклопедия

  • Минковского неравенство — Неравенство Минковского это неравенство треугольника для пространств функций с интегрируемой p ой степенью. Содержание 1 Формулировка 2 Замечание 3 Частные случаи …   Википедия

  • Неравенство Йенсена — обобщает тот факт, что секущая графика выпуклой функции находится над графиком. Неравенство Йе …   Википедия

  • НЕРАВЕНСТВО — отношение, связывающее два числа и посредством одного из знаков: (меньше), (меньше или равно), (больше), (больше или равно), (неравно), то есть Иногда несколько Н. записываются вместе, напр. Н. обладают многими свойствами, общими с равенствами.… …   Математическая энциклопедия

  • Неравенство Брунна — Минковского — Теорема Брунна  Минковского  классическая теорема выпуклой геометрии, установлена Г. Брунном (H. Brunn) в 1887, уточнена и дополнена Минковским[1], обобщена на случай произвольных компактных тел Люстерником[2]. Пусть K0 и K1 … …   Википедия

  • Неравенство Гёлдера и Минковского для конечных и бесконечных сумм — Пусть заданы числа (вообще говоря комплексные) и число q определяется равенством Тогда справедливы неравенства: (Неравенство Гёльдера) и …   Википедия

  • Неравенство Минковского — это неравенство треугольника для пространств функций с интегрируемой ой степенью. Содержание 1 Формулировка 2 Доказательство …   Википедия

  • Неравенство Брунна — Теорема Брунна  Минковского  классическая теорема выпуклой геометрии: Пусть и   компактные тела в n мерном евклидовом пространстве. Рассмотрим сумму Минковского , , то есть множество точек, делящих отрезки с концами в любых точках… …   Википедия

  • Неравенство Гёльдера — в функциональном анализе и смежных дисциплинах  это фундаментальное свойство пространств . Содержание 1 Формулировка 2 Доказательство …   Википедия

  • Неравенство о средних — Среднее степени d (или просто среднее степенное) набора положительных вещественных чисел определяется как При этом по непрерывности доопределяются следующие величины …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»