АРХИМЕДОВА ПОЛУГРУППА это:

АРХИМЕДОВА ПОЛУГРУППА

1) Линейно упорядоченная полугруппа, все строго положительные (строго отрицательные) элементы к-рой принадлежат одному архимедову классу. Всякая естественно упорядоченная А. п. S(см. Естественно упорядоченный группоид) изоморфна нек-рой подполугруппе одной из следующих полугрупп: аддитивной полугруппе всех неотрицательных действительных чисел, полугруппе всех действительных чисел интервала (0,1) с обычной упорядоченностью и операцией , полугруппе, состоящей из всех действительных чисел интервала н символа с обычной упорядоченностью и операцией


Первый случай имеет место тогда и только тогда, когда S - полугруппа с сокращением.

Лит.:[1] Фукс Л., Частично упорядоченные алгебраические системы, пер. с англ., М., 1965. О. А. Иванова.

2) Полугруппа , удовлетворяющая условию: для любых существует такое натуральное число п, что . При условии полугруппа S наз. архимедовой слева (справа). Для коммутативных полугрупп все эти понятия эквивалентны. Любая коммутативная полугруппа Sединственным образом разложима в связку А. п. (причем такое разложение совпадает с наиболее дробным разложением S в связку полугрупп). Этот результат по-разному обобщался на некоммутативные полугруппы (см. 11]). Полугруппа Sс идемпотентом будет архимедовой (архимедовой справа) тогда и только тогда, когда она обладает ядром К, причем Ксодержит идемпотент (Кесть правая группа), а факторполугруппа Риса (см. Полугруппа) есть нильполугруппа. А. п. без идем-потентов труднее поддаются изучению. Лишь в коммутативном случае здесь дано полное описание в терминах нек-рых конструкций, особенно прозрачное для полугрупп с законом сокращения (см. [2], 4.3; [3]).

Лит.:[1] Putcha M.S., "Semigroup Fonun", 1973, v. 6, №. 3, p. 232-39; [2] Клиффорд А., Престон Г., Алгебраическая теория полугрупп, пер. с англ., т. 1-2, М., 1972; [3] Тamurа Т., "Math. Nachr.", 1968, Bd 36, № 5/6, S. 255-87. Л. Н. Шеврин.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "АРХИМЕДОВА ПОЛУГРУППА" в других словарях:

  • ПЕРИОДИЧЕСКАЯ ПОЛУГРУППА — полугруппа, в к рой каждая моногенная подполугруппа конечна (другими словами, каждый элемент имеет конечный порядок). Всякая П. п. имеет идемпотенты. Множество К е всех элементов П. п., нек рая (зависящая от элемента) степень к рых равна данному… …   Математическая энциклопедия

  • УПОРЯДОЧЕННАЯ ПОЛУГРУППА — полугруппа, наделенная структурой (частичного, вообще говоря) порядка стабильного относительно полугрупповой операции, т. е. для любых элементов а, b, с из следует и Если отношение на У. н. Sесть линейный порядок, то S наз. линейно упорядоченной… …   Математическая энциклопедия

  • СВЯЗКА ПОЛУГРУПП — данного семейства {Sa} полугруппа S, обладающая разбиением на подполугруппы, классы к рого суть в точности полугруппы Sa, и для любых Sa,Sb существует Sg такая, что . В этом случае говорят также, что S разложима в связку полугрупп Sa.. Другими… …   Математическая энциклопедия

  • ЯДРО — полугруппы наименьший двусторонний идеал данной полугруппы. Я. имеет не всякая полугруппа. О свойствах Я. полугрупп и о полугруппах, обладающих Я., см. Минимальный идеал, Архимедова полугруппа, Сплетение полугрупп, Топологическая полугруппа. Л. Н …   Математическая энциклопедия

  • ПРАВОУПОРЯДОЧЕННАЯ ГРУППА — группа G, на множестве элементов которой задано отношение линейного порядка такое, что для всех х, у, z из G неравенство влечет за собой . Множество положительных элементов группы Gявляется чистой (то есть ) линейной (то есть ) полугруппой.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»