ДИРИХЛЕ РЯД это:

ДИРИХЛЕ РЯД

для аналитической почти периодической функции - ряд вида

представляющий собой все ряды Фурье аналитической регулярной почти периодической в полосе (a, b), , функции f(s)=f(t+it) на конти-. нуальной совокупности прямых R(s) = t (см. Почти периодическая функция аналитическая).

Двум различным почти периодическим в одной и той же полосе функциям соответствуют два различных Д. р. В случае 2p-периодич. функции ряд (*) переходит в ряд Лорана. Числа А п и L п наз., соответственно, коэффициентами и показателями Дирихле. В отличие от классического Д. р. множество действительных показателей L п в (*) может иметь конечные предельные точки, и, даже, быть всюду плотным. Если все показатели Дирихле имеют один и тот же знак, напр., если f(s)- почти периодич. функция в полосе (а, Р) и в (*)то f(s) - почти периодич. функция в полосе и равномерно по t. Аналогичная теорема имеет место для положительных показателей Дирихле (см. [2]). Если f(s)- почти периодич. функция в полосе [a, b] и неопределенный интеграл функции f(s) в полосе [a, b] ограничен, то ряды

являются рядами Дирихле двух функций f1(s)и f2(s), почти периодических в любой полосе соответственно b1<b.

Лит.:[1] Бор Г., Почти периодические функции, пер. с нем., М.-Л., 1934; [2] Левитан Б. М., Почти периодические функции, М., 1953.

Е. А. Бредихина.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ДИРИХЛЕ РЯД" в других словарях:

  • ДИРИХЛЕ РЯД — функциональный ряд вида где а п комплексные коэффициенты; l п, 0< показатели Д. p., s= s+ it комплексное переменное. При ln=ln пполучается так наз. обыкновенный ряд Дирихле Ряд представляет для s>1 дзета функцию Римана. Ряды где х(п)… …   Математическая энциклопедия

  • Ряд Дирихле — Рядом Дирихле называется ряд вида где s и an комплексные числа, n = 1, 2, 3, … . Абсциссой сходимости ряда Дирихле называется такое число , что при он сходится; абсциссой абсолютной сходимости называется такое число , что при …   Википедия

  • Ряд (математич.) — Ряд, бесконечная сумма, например вида u1 + u2 + u3 +... + un +... или, короче, . (1) Одним из простейших примеров Р., встречающихся уже в элементарной математике, является сумма бесконечно убывающей геометрической прогрессии 1 + q + q 2 +... + q… …   Большая советская энциклопедия

  • Дирихле Петер Густав Лежён — Дирихле (Dirichlet) Петер Густав Лежён (13.2.1805, Дюрен, ‒ 5.5.1859, Гёттинген), немецкий математик. В 1831‒1855 профессор Берлинского, с 1855 Гёттингенского университетов. Основные труды в области теории чисел и математического анализа. Д.… …   Большая советская энциклопедия

  • РЯД — б е с к о н е ч н а я с у м м а, последовательность элементов (наз. ч л е н а м и д а н н о г о р я д а) нек рого линейного топологич. пространства и определенное бесконечное множество их конечных сумм (наз. ч а с т и ч н ы м и с у м м а м и р я… …   Математическая энциклопедия

  • Ряд — I         бесконечная сумма, например вида          u1 + u2 + u3 +... + un +...         или, короче,                   Одним из простейших примеров Р., встречающихся уже в элементарной математике, является сумма бесконечно убывающей… …   Большая советская энциклопедия

  • ДИРИХЛЕ ТЕОРЕМА — 1) Д. т. в теории диофантовых приближений: для любого действительного числа а и натурального Qсуществуют целые о и q, удовлетворяющие условию Дирихле принцип ящиков позволяет доказать и более общую теорему: для любых действительных чисел a1 …   Математическая энциклопедия

  • Дирихле интеграл — (по имени П. Г. Л. Дирихле)         название интегралов нескольких типов.          1) Интеграл                  Этот Д. и. называется также разрывным множителем Дирихле и равен π/2 при β < α, π/4 при β = α и 0 при β > α. Таким образом, Д. и. (1)… …   Большая советская энциклопедия

  • ДИРИХЛЕ ХАРАКТЕР — (mod k) функция c(п)=c(п; k )на множестве целых чисел, удовлетворяющая условиям: Иными словами, Д. х. (mod k) это арифметич. функции, к рые не равны тождественно нулю, вполне мультипликативны и периодичны с периодом k. Понятие Д. х. ввел П.… …   Математическая энциклопедия

  • Дирихле — (Dirichlet)         Петер Густав Лежён (13.2.1805, Дюрен, 5.5.1859, Гёттинген), немецкий математик. В 1831 1855 профессор Берлинского, с 1855 Гёттингенского университетов. Основные труды в области теории чисел и математического анализа. Д.… …   Большая советская энциклопедия

Книги

Другие книги по запросу «ДИРИХЛЕ РЯД» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»