Кратный корень это:

Кратный корень
        многочлена
         f (x) = a0xn + a1xn-1 +... + an,
        число с такое, что f (x) делится без остатка на вторую или более высокую степень двучлена (х — с). При этом с называют корнем кратности, если f (x) делится на (х—с) k, но не делится на (х—c) k+1. Корень многочлена f (x) кратности k является также корнем производных этого многочлена до (k — 1)-го порядка включительно, т. е. многочленов f’(x), f "(x),..., f (k-1)(x). К. к. многочлена f (x) называется К. к. уравнения f (x) = 0. См. также Корень, Уравнение.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Кратный корень" в других словарях:

  • кратный корень — алгебраического уравнения f(х) = а0хn + a1xn 1 + ... + an = 0, такое число b, что f(х) делится без остатка на 2 ю или более высокую степень m двучлена (х b); число m  кратность корня b. * * * КРАТНЫЙ КОРЕНЬ КРАТНЫЙ КОРЕНЬ алгебраического… …   Энциклопедический словарь

  • КРАТНЫЙ КОРЕНЬ — алгебр. ур ния f(x) = а0хn + + а1хn 1 + ... + ап = 0, такое число b, что f(x) делится без остатка на 2 ю или более высокую степень т двучлена (х b); число т кратность корня b …   Естествознание. Энциклопедический словарь

  • КРАТНЫЙ КОРЕНЬ алгебраического — уравнения такое число b, что f(х) делится без остатка на 2 ю или более высокую степень m двучлена (х b); число m кратность корня b …   Большой Энциклопедический словарь

  • Основная теорема алгебры — утверждает, что Всякий отличный от константы многочлен (от одной переменной) с комплексными коэффициентами имеет по крайней мере один корень в поле комплексных чисел. Эквивалентная формулировка теоремы следующая: Поле комплексных чисел… …   Википедия

  • Штурма правило —         правило, позволяющее находить непересекающиеся интервалы, содержащие каждый по одному действительному корню данного алгебраического многочлена с действительными коэффициентами. Дано в 1829 Ж. Ш. Ф. Штурмом. Для любого многочлена f(x) без… …   Большая советская энциклопедия

  • КОНЕЧНЫХ РАЗНОСТЕЙ ИСЧИСЛЕНИЕ — раздел математики, в к ром изучаются функции при дискретном изменении аргумента, в отличие от дифференциального и интегрального исчислений, где аргумент изменяется непрерывно. Пусть функция y=f(x)задана в точках xk=x0+kh(h постоянная, к целое).… …   Математическая энциклопедия

  • ЭЛЛИПТИЧЕСКАЯ КРИВАЯ — неособая полная алгебраическая кривая рода 1. Теория Э. к. является истоком большей части современной алгебраич. геометрии. Но исторически теория Э. к. возникла как часть анализа, как теория эллиптических интегралов и эллиптических функций.… …   Математическая энциклопедия

  • КАТАСТРОФ ТЕОРИЯ — совокупность приложений теории особенностей дифференцируемых (гладких) отображений X. Уитни (Н. Whitney) и теории бифуркаций А. Пуанкаре (Н. Poincare) и А. А. Андронова. Назв. введено Р. Томом (R. Thorn) в 1972. К. т. применяется к геом. и физ.… …   Физическая энциклопедия

  • БЮДАНА - ФУРЬЕ ТЕОРЕМА — число корней алгеб раич. уравнения заключенных в интервале равно или на четное число меньше, чем где число перемен знака в ряду производных многочлена в точке а, т. е. в ряду а число перемен знака в этом ряду в точке 6. При этом каждый кратный …   Математическая энциклопедия

  • КВАДРАТНОЕ УРАВНЕНИЕ — алгебраическое уравнение 2 й степени. Общий вид К. у. В поле комплексных чисел К. у. имеет два решения, выражающиеся в радикалах через коэффициенты этого уравнения: При b2>4ас оба решения К. у. действительные и различные, при b2<4ас решения …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»