Комбинаторика это:

Комбинаторика
        1) то же, что математический Комбинаторный анализ. 2) Раздел элементарной математики, связанный с изучением количества комбинаций, подчинённых тем или иным условиям, которые можно составить из заданного конечного множества объектов (безразлично, какой природы; это могут быть буквы, цифры, какие-либо предметы и т.п.).
         Наиболее употребительные формулы К.:
         Число размещений. Пусть имеется n различных предметов. Сколькими способами можно выбрать из них т предметов (учитывая порядок, в котором выбираются предметы)? Число способов равно
         Anm =
         Anm называют числом размещений из n элементов по m.
         Число перестановок. Рассмотрим задачу: сколькими способами можно установить порядок следования друг за другом n различных предметов? Число способов равно
         Pn = 1․2․ 3... n= n!
         (знак n! читается: «n факториал»; оказывается удобным рассматривать также 0!, полагая его равным 1). Pn называют числом перестановок n элементов.
         Число сочетаний. Пусть имеется n различных предметов. Сколькими способами можно выбрать из них т предметов (безразлично, в каком порядке выбираются предметы)? Число способов такого выбора равно
         Cnm =
         Cnm называют числом сочетаний из n элементов по m. Числа Cnm получаются как коэффициенты разложения n-й степени двучлена (бинома, см. Ньютона бином):
         (a+b) n=Cn0 an + Cn1 an-1b +Cn2an-2b2 +... + Cnn-1abn-1 + Cnn bn,
        и поэтому они называются также биномиальными коэффициентами. Основные соотношения для биномиальных коэффициентов:
         Cnm=Cnn-m, Cnm + Cnm+1 = Cn+1m+1
         Cn0 + Cn1 + Cn2 +...+ Cnn-1 + Cnn =2n,
         Cn0Cn1 + Cn2 —...+ (—1) nCnn = 0.
         Числа Anm, Pm и Cnm связаны соотношением:
         Anm=Pm Cnm.
         Рассматриваются также размещения с повторением (т. е. всевозможные наборы из m предметов n различных видов, порядок в наборе существен) и сочетания с повторением (то же, но порядок в наборе не существен). Число размещений с повторением даётся формулой nm, число сочетаний с повторением — формулой Cmn+m-1.
         Основные правила при решении задач К.: Правило суммы. Пусть некоторый предмет А может быть выбран из совокупности предметов m способами, а другой предмет В можно выбрать n способами. Тогда имеется т + n возможностей выбрать либо предмет A, либо предмет В.
         Правило произведения. Пусть предмет А можно выбрать m способами и после каждого такого выбора предмет В можно выбрать n способами; тогда выбор пары (А, В) в указанном порядке можно осуществить m + n способами.
         Принцип включения и исключения. Пусть имеется N предметов, которые могут обладать n свойствами α1, α2,..., αn. Обозначим через N i, αj,..., αk) число предметов, обладающих свойствами αi, αj,..., αk и, быть может, какими-либо другими свойствами. Тогда число N' предметов, не обладающих ни одним из свойств, α1, α2,..., αn, даётся формулой
        
         = N—N 1) — N 2) —... —N n) + N 1, α2) + N 1, α3) +... + N n-1, αn) — N 1, α2, α3) —... — N n-2, αn-1, αn) +... +(—1) n N 1,..., αn)
         Лит.: Netto E. Lehrbuch der Combinatorik, 2 Aufl., Lpz. — B., 1927.
         В. Е. Тараканов.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Комбинаторика" в других словарях:

  • КОМБИНАТОРИКА — (лат. ars combinatoria). Наука о законах сочетания известных предметов. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КОМБИНАТОРИКА лат. ars combinatoria. Наука о законах сочетания известных предметов. Объяснение …   Словарь иностранных слов русского языка

  • КОМБИНАТОРИКА — раздел математики, в котором изучаются простейшие соединения . Перестановки соединения, которые можно составить из n предметов, меняя всеми возможными способами их порядок; число ихРазмещения соединения, содержащие по m предметов из числа n… …   Большой Энциклопедический словарь

  • КОМБИНАТОРИКА — КОМБИНАТОРИКА, и, жен. Раздел дискретной математики, изучающий всевозможные сочетания и расположения предметов. | прил. комбинаторный, ая, ое. К. анализ. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • КОМБИНАТОРИКА — раздел математики, где рассматриваются сочетания, размещения, перестановки элементов и связанные с ними задачи. Широко применяется при вероятностном моделировании геол. процессов. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н …   Геологическая энциклопедия

  • комбинаторика — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN combinatorics …   Справочник технического переводчика

  • КОМБИНАТОРИКА — раздел математики, посвящённый решению задач выбора и расположения элементов из некоторого основного (обычно конечного) множества в соответствии с заданными правилами. Простейшими задачами К. являются перестановки, сочетания и размещения …   Большая политехническая энциклопедия

  • Комбинаторика — (Комбинаторный анализ)  раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана со многими другими… …   Википедия

  • комбинаторика — и; ж. [лат. combinare соединять] Раздел математики, изучающий все возможные способы простейших перестановок элементов, цифр, каких л. данных. * * * комбинаторика раздел математики, в котором изучаются простейшие «соединения». Перестановки … …   Энциклопедический словарь

  • Комбинаторика — ж. Раздел математики, изучающий различного рода соединения элементов: перестановки, сочетания, размещения. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

  • комбинаторика — комбинаторика, комбинаторики, комбинаторики, комбинаторик, комбинаторике, комбинаторикам, комбинаторику, комбинаторики, комбинаторикой, комбинаторикою, комбинаториками, комбинаторике, комбинаториках (Источник: «Полная акцентуированная парадигма… …   Формы слов

Книги

Другие книги по запросу «Комбинаторика» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»