Дифференциальные уравнения с отклоняющимся аргументом это:

Дифференциальные уравнения с отклоняющимся аргументом
        уравнения, связывающие аргумент, а также искомую функцию и её производные, взятые, вообще говоря, при различных значениях этого аргумента (в отличие от обычных дифференциальных уравнений (См. Дифференциальные уравнения)). Примерами могут служить уравнения
         x’'(t) = ax (t - τ) (1)
        и
         x’'(t) = ax (kt), (2)
        где постоянные а, τ, k заданы; τ = t - (t - τ) в уравнении (1) и t - kt в уравнении (2) — отклонения аргумента. Такие уравнения появились в конце 18 в. Неоднократно рассматривались сами по себе и в связи с решением геометрических задач, а позднее — в связи с различными приложениями, прежде всего к теории регулирования. Построение систематической теории Д. у. с о. а. было начато в 50-х гг. 20 в., а уже с 60-х гг. эта теория представляет собой значительный отдел математического анализа.
         Наиболее хорошо изучены линейные однородные автономные (т. е. с постоянными коэффициентами и постоянными отклонениями аргумента) Д. у. с о. а.; к таким уравнениям относится, например, (1). Здесь имеется достаточно полная система решений вида х = eрt, причём для отыскания р получается трансцендентное характеристическое уравнение вида Р (р) = 0, где Р (р) — сумма членов вида Apm еαp, m ≥ 0 — целое [например, для (1) имеем Р (р) ≡ р - ае-τp]. Это уравнение имеет, вообще говоря, бесконечное число комплексных корней. Прочие решения рассматриваемого Д. у. с о. а. разлагаются в ряды по указанным простейшим решениям, и поэтому об основных свойствах совокупности решений, в частности об их устойчивости, можно судить по расположению нулей функции Р (р).
         Важнейший и наиболее изученный класс Д. у. с о. а. образуют дифференциальные уравнения с запаздывающим аргументом, в которых старшая производная от искомой функции при каком-либо значении аргумента определяется через саму эту функцию и её младшие производные, взятые при меньших либо равных значениях аргумента. Примеры: уравнение (1) при τ ≥ 0 (τ—запаздывание); уравнение (2) при k ≤ 1 и t ≥ 0. Эти уравнения и их системы, если аргументом служит время, описывают процессы с последействием, скорость которых в любой момент определяется их состоянием не только в тот же момент (как для обычных дифференциальных уравнении), но и в предшествующие моменты. Такая ситуация возникает, в частности, в системах автоматического управления при наличии запаздывания в органе управления. Уравнения с запаздывающим аргументом во многом напоминают обыкновенные дифференциальные уравнения, однако в ряде отношений отличаются от них. Например, если решение уравнения (1) строится при tt0, то в качестве начального условия х (t) должно быть задано при t0 - τ ≤ tt0; решение можно строить последовательно на интервалах t0tt0 + τ, t0 + τ ≤ t0 + 2τ, пользуясь на каждом шаге результатом вычислений с предыдущего шага. В линейном автономном случае к таким уравнениям можно применять методы операционного исчисления (См. Операционное исчисление).
         Лит.: Пинни Э., Обыкновенные дифференциально-разностные уравнения, пер. с англ., М., 1961; Беллман Р., Кук К., Дифференциально-разностные уравнения, пер. с англ., М., 1967; Мышкис А. Д., Эльсгольц Л. Э., Состояние и проблемы теории дифференциальных уравнений с отклоняющимся аргументом, «Успехи математических наук», 1967, т. 22, в. 2 (134) (библ.); Эльсгольц Л. Э., Норкин С. Б., Введение в теорию дифференциальных уравнений с отклоняющимся аргументом, 2 изд., М., 1971.
         А. Д. Мышкис.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Дифференциальные уравнения с отклоняющимся аргументом" в других словарях:

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ОТКЛОНЯЮЩИМСЯ АРГУМЕНТОМ — дифференциальное уравнение, связывающее аргумент, искомую функцию и ее производные, взятые, вообще говоря, при различных значениях этого аргумента. Примеры: где постоянные а, t, kзаданы; т в уравнении (1) и t kt в уравнении (2) отклонения… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНЫЕ ИГРЫ — раздел математич. теории управления (см. Автоматического управления теория), в к ром изучается управление в конфликтных ситуациях. Теория Д. и. примыкает также к общей игр теории. Первые работы по теории Д. и. появились в сер. 50 х гг. 20 в.… …   Математическая энциклопедия

  • Дифференциально-разностные уравнения —         уравнения, связывающие аргумент, искомую функцию, её производные и приращения (разности). Например, у = kΔy, где у = у (х), Δy = y (x + h) y (x). Подстановка последнего выражения в исходное уравнение показывает, что Д. р. у. это частный… …   Большая советская энциклопедия

  • ОСЦИЛЛЯЦИОННОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ — обыкновенное дифференциальное уравнение, обладающее хотя бы одним осцилляционным (колеблющимся) решением. Имеются различные понятия осцилляционности решения. Наиболее распространены следующие: осцилляционность в точке (в качестве к рой, как… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ОБЫКНОВЕННОЕ — уравнение, в к ром неизвестной является функция от одного независимого переменного, причем в это уравнение входят не только сама неизвестная функция, но и ее производные различных порядков. Термин дифференциальные уравнения был предложен Г.… …   Математическая энциклопедия

  • ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПОЗИЦИОННОЕ — решение задачи оптимального управления математической теории, состоящей в синтезе оптимального управления в виде стратегии управления по принципу обратной связи, как функции текущего состояния (позиции) процесса (см. [1] [3]). Последнее… …   Математическая энциклопедия

  • НЕОСЦИЛЛЯЦИИ ПРОМЕЖУТОК — промежуток несопряженности, связный промежуток Jчисловой оси такой, что любое нетривиальное решение линейного обыкновенного дифференциального уравнения и го порядка с действительными коэффициентами имеет на нем самое большее п 1 нулей, считая т… …   Математическая энциклопедия

  • ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПРОГРАММНОЕ — решение задачи оптимального управления математической теории, в к рой управляющее воздействие u=u(t).формируется в виде функции времени (тем самым предполагается, что по ходу процесса никакой информации, кроме заданной в самом начале, в систему… …   Математическая энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»