Цилиндрические магнитные домены

Цилиндрические магнитные домены
        «магнитные пузырьки», изолированные однородно намагниченные подвижные области ферро- или ферримагнетика (Домены), имеющие форму круговых цилиндров и направление намагниченности, противоположное направлению намагниченности остальной его части (рис. 1). Обнаружены в конце 50-х гг. 20 в. в ортоферритах и гексаферритах, предложение о практическом использовании Ц. м. д. в вычислительной технике относится к 1967. На практике Ц. м. д. получают в тонких (1—100 мкм) плоскопараллельных пластинах (плёнках) монокристаллических ферримагнетиков (ферриты-гранаты) или аморфных ферромагнетиков (сплавы d- и f-переходных элементов (См. Переходные элементы) с единственной осью лёгкого намагничивания (См. Ось лёгкого намагничивания), направленной перпендикулярно поверхности пластины). Магнитное поле, формирующее Ц. м. д. (поле подмагничивания), прикладывается по оси лёгкого намагничивания. В отсутствии внешнего подмагничивающего поля доменная структура пластин имеет неупорядоченный лабиринтообразный вид (рис. 2, а). При наложении подмагничивающего поля домены, не имеющие контакта с краями пластины, стягиваются и образуют Ц. м. д. (рис. 2, б). Вектор намагниченности Ц. м. д. J ориентируется вдоль оси лёгкого намагничивания.
         Изолированные Ц. м. д. существуют в определённом интервале полей подмагничивания, который составляет несколько процентов от величины намагниченности насыщения материала. Нижняя граница интервала устойчивости соответствует переходу Ц. м. д. в домены иной формы, верхняя — исчезновению (коллапсу) Ц. м. д. Устойчивое существование Ц. м. д. обусловлено равновесием трёх сил: силы взаимодействия намагниченности Ц. м. д. с полем подмагничивания; силы, связанной с существованием у Ц. м. д. стенок (аналогична силе поверхностного натяжения); наконец, силы взаимодействия намагниченности Ц. м. д. с размагничивающим полем остальной части магнетика. Первые две силы стремятся сжать Ц. м. д., а третья — растянуть. В момент формирования радиус Ц. м. д. имеет максимальную величину; при дальнейшем увеличении подмагничивающего поля радиус Ц. м. д. уменьшается, а при некотором поле Нк сжимающие силы начинают превышать растягивающие и Ц. м. д. исчезают (коллапсируют) (рис. 3). Реальные размеры Ц. м. д. зависят, помимо поля подмагничивания, от физических параметров материала и толщины плёнки. В центре интервала устойчивости диаметр Ц. м. д. примерно равен толщине плёнки.
         В однородном поле подмагничивания Ц. м. д. неподвижны, в поле, обладающем пространственной неоднородностью, они перемещаются в область с меньшей напряжённостью поля. Существует предельная скорость перемещения Ц. м. д., для разных веществ составляющая от 10 до 1000 м/сек. Скорость Ц. м. д. ограничивают процессы передачи энергии от движущихся Ц. м. д. кристаллической решётке, спиновым волнам (См. Спиновые волны) и т.п., а также взаимодействие Ц. м. д. с дефектами в кристаллах (с уменьшением числа дефектов скорость увеличивается). Ц. м. д. визуально наблюдаются под микроскопом в поляризованном свете (используется Фарадея эффект).
         Тонкие эпитаксиальные плёнки (см. Эпитаксия) смешанных редкоземельных ферритов-гранатов и аморфные плёнки сплавов d- и f-металлов начинают применяться в запоминающих устройствах цифровых вычислительных машин (для записи, хранения и считывания информации в двоичной системе счисления). Нули и единицы двоичного кода при этом изображаются соответственно присутствием и отсутствием Ц. м. д. в данном месте плёнки. Существуют магнитные плёнки, в которых диаметр Ц. м. д. менее 0,5 мкм, что позволяет, в принципе, осуществлять запись информации с плотностью более 107 бит/см2. Практически реализованная система записи и считывания информации основана на перемещении Ц. м. д. в магнитных плёнках при помощи тонких (0,3—1 мкм) аппликаций из магнитно-мягкого материала (пермаллоя (См. Пермаллой)) Т—I-, Y—I- или V-образной (шевронной) формы, накладываемых непосредственно на плёнку с Ц. м. д. Аппликации намагничивают вращающимся в плоскости плёнки управляющим магнитным полем Нупр (рис. 4) так, что в требуемом направлении возникает градиент поля, обеспечивающий перемещение Ц. м. д. Схемы управления перемещением Ц. м. д. при помощи пермаллоевых аппликаций работают на частотах изменения управляющего поля около 1 Мгц, что соответствует скорости записи (считывания) информации Цилиндрические магнитные домены 1 Мбит/сек. Запись информации осуществляется с помощью генераторов Ц. м. д., работающих на принципе локального перемагничивания материала импульсным магнитным полем тока, пропускаемого по проводнику в форме шпильки. Одна из возможных схем генерации и перемещения Ц. м. д. показана на рис. 5. Для считывания информации в запоминающих устройствах на Ц. м. д. используют детекторы, работающие на магниторезистивном эффекте (см. Магнетосопротивление). Магниторезистивный детектор Ц. м. д. представляет собой аппликацию специальной формы из проводящего материала (например, пермаллоя), сопротивление которого зависит от действующего на него магнитного поля. Проходя детектор, Ц. м. д. своим полем изменяют его сопротивление, что можно зарегистрировать по изменению падения напряжения на детекторе. Запоминающие устройства на Ц. м. д. обладают высокой надёжностью и низкой стоимостью хранения единицы информации. Применение Ц. м. д. — один из возможных путей развития ЭВМ.
         Лит.: Bobeck А. Н., Properties and device applications of magnetic domains in ortho-ferrites, «The Bell system Technical Journal», 1967, v. 46, № 8; Цилиндрические магнитные домены в магнитоодноосных материалах. Физические свойства и основы технических применений, «Микроэлектроника», 1972, т. 1, в. 1 и 2; О' Dell Т. Н., Magnetic bubbles, L., 1974; Bobeck A. Н., Delia Torre E., Magnetic bubbles, Amst., 1975; Bobeck A. Н., Bonyhard P. I., Geusic J. E., Magnetic bubbles — an emerging new memory technology, «Proceedings of the Institute of Electrical and Electronics Engineers», 1975, v. 63, № 8; Боярченков М. А., Магнитные элементы автоматики и вычислительной техники, М., 1976.
         Ф. В. Лисовский.
        Рис. 1. Изолированный цилиндрический магнитный домен (1) в пластине магнетика (2) с одной осью лёгкого намагничивания. Н — подмагничивающее поле, направление которого совпадает с осью лёгкого намагничивания, J — намагниченность магнетика (знаки + и - указывают на различие в направлении намагниченности).
        Рис. 1. Изолированный цилиндрический магнитный домен (1) в пластине магнетика (2) с одной осью лёгкого намагничивания. Н — подмагничивающее поле, направление которого совпадает с осью лёгкого намагничивания, J — намагниченность магнетика (знаки + и - указывают на различие в направлении намагниченности).
        Рис. 3. Область устойчивого существования цилиндрических магнитных доменов. По оси ординат отложено отношение напряжённости поля подмагничивания к намагниченности насыщения магнетика, по оси абсцисс - отношение толщины пластины к её характеристической длине.
        Рис. 3. Область устойчивого существования цилиндрических магнитных доменов. По оси ординат отложено отношение напряжённости поля подмагничивания к намагниченности насыщения магнетика, по оси абсцисс - отношение толщины пластины к её характеристической длине.
        
        Рис. 4. Схемы перемещения цилиндрических магнитных доменов (1) на пермаллоевых аппликациях (2) Т—I-oбразного (а), Y—I-oбразного (б) и шевронного (V-oбразного) (в) профилей. Нупр — управляющее магнитное поле.
        
        Рис. 5. Схема генерирования и перемещения цилиндрических магнитных доменов: слева — генератор доменов, Нупр — управляющее магнитное поле. При повороте управляющего поля один из концов зародышевого домена постепенно втягивается в канал распространения, обособляется и под действием поля намагниченных аппликаций перемещается по каналу.
        Рис. 2,б. Цилиндрические магнитные домены, образовавшиеся при помещении пластины в подмагничивающее поле.
        Рис. 2,б. Цилиндрические магнитные домены, образовавшиеся при помещении пластины в подмагничивающее поле.
        Рис. 2а. Лабиринтная доменная структура магнитоодноосных пластин в отсутствии магнитного поля, наблюдаемая под микроскопом в поляризованном свете (размер доменов ок. 10 мкм).
        Рис. 2а. Лабиринтная доменная структура магнитоодноосных пластин в отсутствии магнитного поля, наблюдаемая под микроскопом в поляризованном свете (размер доменов ок. 10 мкм).

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "Цилиндрические магнитные домены" в других словарях:

  • ЦИЛИНДРИЧЕСКИЕ МАГНИТНЫЕ ДОМЕНЫ — «магнитные пузырьки», изолированные однородно намагниченные подвижные области ферро или ферримагнетика (домены), имеющие форму круговых цилиндров и направление намагниченности, противоположное направлению намагниченности остальной его части (рис …   Физическая энциклопедия

  • ДОМЕНЫ — (от франц. domaine владение; область, сфера), области химически однородной среды, отличающиеся электрич., магн. или упругими свойствами, либо упорядоченностью в расположении частиц. Соответственно различают антиферромагн. и ферромагн. Д. (см.… …   Физическая энциклопедия

  • ГОСТ 28111-89: Микросборки на цилиндрических магнитных доменах. Термины и определения — Терминология ГОСТ 28111 89: Микросборки на цилиндрических магнитных доменах. Термины и определения оригинал документа: 54. Аннигилятор ЦМД Аннигилятор Функциональный узел ЦМД кристалла, предназначенный для уничтожения цилиндрических магнитных… …   Словарь-справочник терминов нормативно-технической документации

  • ФЕРРОМАГНЕТИЗМ — магнитоупорядоченное состояние в ва, при к ром все магн. моменты ат. носителей магнетизма в в ве параллельны и оно обладает самопроизвольной намагниченностью. Рис. 1. Ферромагнитная (коллинеарная) атомная структура гранецентрированной кубич.… …   Физическая энциклопедия

  • МАГНИТНАЯ ДОМЕННАЯ СТРУКТУРА — совокупность макроскопич. областей ( доменов )магнитоупорядоченного вещества, отличающихся, в зависимости от конкретного типа магн. упорядочения, направлением намагниченности М, вектора антиферромагнетизма L или направлениями М и L одновременно… …   Физическая энциклопедия

  • МАГНИТНАЯ ПЛЕНКА — слой магн. вещества (обычно ферро или ферримагнетика) толщиной от долей нанометра до неск. микрометров с рядом особенностей атомно кристаллич. структуры, магн., электрич. и др. физических свойств, отличающих плёнку от массивных магнетиков. М. п.… …   Физическая энциклопедия

  • ДОМЕННАЯ СТЕНКА — (доменная граница магнитных доменов) переходный слой от одного домена с однородной намагниченностью М1 к др. домену с однородной намагниченностью М2 (см. Магнитная доменная структура). Толщина Д. с. d0 определяется конкуренцией неоднородного… …   Физическая энциклопедия

  • ДОМЕНОПРОДВИГАЮЩАЯ СТРУКТУРА — (ДПС) устройство, служащее для продвижения цилиндрических магнитных доменов (ЦМД) вдоль поверхности плёнки ЦМД материала. Применяется в запоминающих устройствах на ЦМД. Существуют пермаллоевые ДПС, представляющие совокупность пермаллоевых… …   Физическая энциклопедия

  • Боярченков, Михаил Александрович — Боярченков Михаил Александрович Дата рождения: 9 ноября 1931(1931 11 09) Место рождения: Москва Дата смерти: 26 июня 1977(1977 06 26) (45 лет) …   Википедия

  • Гадолиний — 64 Европий ← Гадолиний → Тербий …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»