symbolische berechnung

  • 1Symbolische Integration — Als algebraische oder symbolische Integration oder Quadratur bezeichnet man in der Mathematik die Berechnung von Integralen durch exakte Termumformungen, im Gegensatz zur approximativen numerischen Quadratur. Die algebraische Integration gehört… …

    Deutsch Wikipedia

  • 2Erweiterte symbolische Methode der Wechselstromtechnik — Die Erweiterte symbolische Methode der Wechselstromtechnik ist eine Verallgemeinerung der komplexen Wechselstromrechnung auf exponentiell anschwellende und abklingende sinusförmige Signale. Dadurch erfolgt der Übergang von der imaginären Frequenz …

    Deutsch Wikipedia

  • 3Computeralgebra — Die Computeralgebra ist das Teilgebiet der Mathematik und Informatik, das sich mit der automatisierten, symbolischen Manipulation algebraischer Ausdrücke beschäftigt. Inhaltsverzeichnis 1 Überblick 2 Zugrundeliegende Strukturen 2.1 Gruppen …

    Deutsch Wikipedia

  • 4Algebraische Vielfachheit — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia

  • 5Eigenfunktion — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia

  • 6Eigenfunktionen — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia

  • 7Eigenvektor — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia

  • 8Eigenvektoren — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia

  • 9Eigenwert — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia

  • 10Eigenwerte — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia