orientable bundle

  • 1Frame bundle — In mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change… …

    Wikipedia

  • 2Line bundle — In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising… …

    Wikipedia

  • 3Cotangent bundle — In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle.… …

    Wikipedia

  • 4Clifford bundle — In mathematics, a Clifford bundle is an algebra bundle whose fibers have the structure of a Clifford algebra and whose local trivializations respect the algebra structure. There is a natural Clifford bundle associated to any (pseudo) Riemannian… …

    Wikipedia

  • 5Stiefel–Whitney class — In mathematics, the Stiefel–Whitney class arises as a type of characteristic class associated to real vector bundles E ightarrow X. It is denoted by w ( E ), taking values in H^*(X; /2), the cohomology groups with mod 2 coefficients. The… …

    Wikipedia

  • 6Seifert fiber space — A Seifert fiber space is a 3 manifold together with a nice decomposition as a disjoint union of circles. In other words it is a S^1 bundle (circle bundle) over a 2 dimensional orbifold. Most small 3 manifolds are Seifert fiber spaces, and they… …

    Wikipedia

  • 7Orientability — For orientation of vector spaces, see orientation (mathematics). For other uses, see Orientation (disambiguation). The torus is an orientable surface …

    Wikipedia

  • 8Spin structure — In differential geometry, a spin structure on an orientable Riemannian manifold allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical …

    Wikipedia

  • 9Volume form — In mathematics, a volume form is a nowhere zero differential n form on an n manifold. Every volume form defines a measure on the manifold, and thus a means to calculate volumes in a generalized sense. A manifold has a volume form if and only if… …

    Wikipedia

  • 10Reduction of the structure group — In mathematics, in particular the theory of principal bundles, one can ask if a G bundle comes from a subgroup H < G. This is called reduction of the structure group (to H), and makes sense for any map H o G, which need not be an inclusion&#8230; …

    Wikipedia