dünnbesetzte matrix

  • 21Eigenwerte — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia

  • 22Eigenwertgleichung — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia

  • 23Eigenwertzerlegung — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia

  • 24Linkseigenvektor — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …

    Deutsch Wikipedia

  • 25Rechtseigenvektor — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sc …

    Deutsch Wikipedia

  • 26Erweiterte Koeffizientenmatrix — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …

    Deutsch Wikipedia

  • 27Homogene Gleichung — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …

    Deutsch Wikipedia

  • 28Homogenes Gleichungssystem — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …

    Deutsch Wikipedia

  • 29Koeffizientenmatrix — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …

    Deutsch Wikipedia

  • 30Reduzierte Stufenform — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …

    Deutsch Wikipedia

  • 31Stufenform — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …

    Deutsch Wikipedia

  • 32Treppennormalform — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …

    Deutsch Wikipedia

  • 33Zeilenstufenform — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …

    Deutsch Wikipedia

  • 34Numerische Verfahren — Die Liste numerischer Verfahren führt Verfahren der numerischen Mathematik nach Anwendungsgebieten auf. Inhaltsverzeichnis 1 Lineare Gleichungssysteme 2 Nichtlineare Gleichungssysteme 3 Numerische Integration 4 Approximation und Interpolation …

    Deutsch Wikipedia

  • 35GMRES — Das GMRES Verfahren (für Generalized minimal residual method) ist ein iteratives numerisches Verfahren zur Lösung großer, dünnbesetzter linearer Gleichungssysteme. Das Verfahren ist aus der Klasse der Krylow Unterraum Verfahren und insbesondere… …

    Deutsch Wikipedia

  • 36Krylov-Unterraum-Verfahren — Krylow Unterraum Verfahren sind iterative Verfahren zum Lösen großer, dünnbesetzter linearer Gleichungssysteme, wie sie bei der Diskretisierung von partiellen Differentialgleichungen entstehen oder von Eigenwertproblemen. Sie sind benannt nach… …

    Deutsch Wikipedia

  • 37Krylov-Unterraumverfahren — Krylow Unterraum Verfahren sind iterative Verfahren zum Lösen großer, dünnbesetzter linearer Gleichungssysteme, wie sie bei der Diskretisierung von partiellen Differentialgleichungen entstehen oder von Eigenwertproblemen. Sie sind benannt nach… …

    Deutsch Wikipedia

  • 38Finite-Elemente-Analyse — Die Finite Elemente Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung, insbesondere elliptischer partieller Differentialgleichungen mit Randbedingungen. Sie ist auch ein weit verbreitetes modernes Berechnungsverfahren im… …

    Deutsch Wikipedia

  • 39Finite-Elemente-Verfahren — Die Finite Elemente Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung, insbesondere elliptischer partieller Differentialgleichungen mit Randbedingungen. Sie ist auch ein weit verbreitetes modernes Berechnungsverfahren im… …

    Deutsch Wikipedia

  • 40Finite Elemente — Die Finite Elemente Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung, insbesondere elliptischer partieller Differentialgleichungen mit Randbedingungen. Sie ist auch ein weit verbreitetes modernes Berechnungsverfahren im… …

    Deutsch Wikipedia