algebre de lie

  • 1 Algebre de Lie — Algèbre de Lie En mathématiques, une algèbre de Lie, nommée en l honneur du mathématicien Sophus Lie, est un espace vectoriel (parfois même une algèbre) qui est munie d un crochet de Lie. Sommaire 1 Définitions, exemples et premières propriétés 1 …

    Wikipédia en Français

  • 2 Algèbre De Lie — En mathématiques, une algèbre de Lie, nommée en l honneur du mathématicien Sophus Lie, est un espace vectoriel (parfois même une algèbre) qui est munie d un crochet de Lie. Sommaire 1 Définitions, exemples et premières propriétés 1.1 Définition …

    Wikipédia en Français

  • 3 Algèbre de lie — En mathématiques, une algèbre de Lie, nommée en l honneur du mathématicien Sophus Lie, est un espace vectoriel (parfois même une algèbre) qui est munie d un crochet de Lie. Sommaire 1 Définitions, exemples et premières propriétés 1.1 Définition …

    Wikipédia en Français

  • 4 Algèbre de Lie — Pour les articles homonymes, voir Algèbre (homonymie). En mathématiques, une algèbre de Lie, nommée en l honneur du mathématicien Sophus Lie, est un espace vectoriel qui est muni d un crochet de Lie, c est à dire d une loi de composition interne… …

    Wikipédia en Français

  • 5 Représentation d'algèbre de Lie — En mathématiques, une représentation d une algèbre de Lie est une façon d écrire cette algèbre comme une algèbre de matrices, ou plus généralement d endomorphismes d un espace vectoriel, avec le crochet de Lie donné par le commutateur. Sommaire 1 …

    Wikipédia en Français

  • 6 Representation d'algebre de Lie — Représentation d algèbre de Lie En mathématiques, une représentation d une algèbre de Lie est une façon d écrire cette algèbre comme une algèbre de matrices, ou plus généralement d endomorphismes d un espace vectoriel, avec le crochet de Lie… …

    Wikipédia en Français

  • 7 Représentation d'algèbre de lie — En mathématiques, une représentation d une algèbre de Lie est une façon d écrire cette algèbre comme une algèbre de matrices, ou plus généralement d endomorphismes d un espace vectoriel, avec le crochet de Lie donné par le commutateur. Définition …

    Wikipédia en Français

  • 8 Algebre de Kac-Moody — Algèbre de Kac Moody En mathématiques, une algèbre de Kac Moody est une algèbre de Lie, généralement de dimension infinie, pouvant être définie par des générateurs et des relations via une matrice de Cartan généralisée. Les algèbres de Kac Moody… …

    Wikipédia en Français

  • 9 Algebre enveloppante — Algèbre enveloppante En mathématiques, on peut construire l algèbre enveloppante U(L) d une algèbre de Lie L. Il s agit une algèbre associative unitaire qui permet de rendre compte de la plupart des propriétés de L. Si A est une algèbre… …

    Wikipédia en Français

  • 10 Algèbre Enveloppante — En mathématiques, on peut construire l algèbre enveloppante U(L) d une algèbre de Lie L. Il s agit une algèbre associative unitaire qui permet de rendre compte de la plupart des propriétés de L. Si A est une algèbre associative sur un corps K, on …

    Wikipédia en Français

  • 11 LIE (S.) — À la fin du XIXe siècle, le mathématicien norvégien Marius Sophus Lie a posé les fondements d’une des théories les plus centrales des mathématiques contemporaines, la théorie des groupes de Lie, dont la puissance s’est révélée considérable, et… …

    Encyclopédie Universelle

  • 12 Algebre de Hopf — Algèbre de Hopf En mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l antipode) qui généralise la notion de passage à l inverse dans un groupe. Ces algèbres ont été… …

    Wikipédia en Français

  • 13 Algèbre De Hopf — En mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l antipode) qui généralise la notion de passage à l inverse dans un groupe. Ces algèbres ont été introduites à l… …

    Wikipédia en Français

  • 14 Algèbre de hopf — En mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l antipode) qui généralise la notion de passage à l inverse dans un groupe. Ces algèbres ont été introduites à l… …

    Wikipédia en Français

  • 15 Algebre multilineaire — Algèbre multilinéaire En mathématiques, l’algèbre multilinéaire étend les méthodes de l’algèbre linéaire. Tout comme l’algèbre linéaire est bâtie sur le concept d’un vecteur et développe la théorie des espaces vectoriels, l’algèbre multilinéaire… …

    Wikipédia en Français

  • 16 Algèbre Multilinéaire — En mathématiques, l’algèbre multilinéaire étend les méthodes de l’algèbre linéaire. Tout comme l’algèbre linéaire est bâtie sur le concept d’un vecteur et développe la théorie des espaces vectoriels, l’algèbre multilinéaire est bâtie sur le… …

    Wikipédia en Français

  • 17 Algebre sur un anneau — Algèbre sur un corps En mathématiques, une algèbre est une structure algébrique qui se définit comme suit: est une algèbre sur un corps , ou autrement dit une algèbre si : (E, +, ·) est un espace vectoriel sur la loi × est définie …

    Wikipédia en Français

  • 18 Algebre sur un corps — Algèbre sur un corps En mathématiques, une algèbre est une structure algébrique qui se définit comme suit: est une algèbre sur un corps , ou autrement dit une algèbre si : (E, +, ·) est un espace vectoriel sur la loi × est définie …

    Wikipédia en Français

  • 19 Algèbre (structure) — Algèbre sur un corps En mathématiques, une algèbre est une structure algébrique qui se définit comme suit: est une algèbre sur un corps , ou autrement dit une algèbre si : (E, +, ·) est un espace vectoriel sur la loi × est définie …

    Wikipédia en Français

  • 20 Algèbre Sur Un Anneau — Algèbre sur un corps En mathématiques, une algèbre est une structure algébrique qui se définit comme suit: est une algèbre sur un corps , ou autrement dit une algèbre si : (E, +, ·) est un espace vectoriel sur la loi × est définie …

    Wikipédia en Français


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.