Dual d'un module

Un article de Wikipédia, l'encyclopédie libre.

En algèbre commutative et plus généralement en théorie des anneaux, la notion de dual d'un module généralise celle de dual d'un espace vectoriel.

Le dual d'un module A par rapport à un module B (sur un anneau R) est l'ensemble des homomorphismes de A dans B. Il est noté Hom(A,B). Si le module B n'est pas spécifié, par défaut, on considère qu'il s'agit de l'anneau R. Le dual Hom(A,R) est appelé simplement « dual de A »[1] et noté A*[2].

Définition[modifier | modifier le code]

Si A et B sont deux modules à gauche sur un anneau R, l'ensemble Hom(A,B) des morphismes de A dans B est un groupe pour l'addition.

Si B est non seulement un module à gauche mais un bimodule (c'est-à-dire s'il est aussi muni d'une structure de module à droite, compatible avec celle à gauche) alors Hom(A,B) est naturellement muni d'une structure de module à droite. C'est toujours le cas si l'anneau R est commutatif. S'il ne l'est pas, on peut considérer le bimodule particulier B = R :

Le dual A* d'un R-module à gauche A est le R-module à droite Hom(A,R).

(De même, le dual d'un R-module à droite A est le R-module à gauche Hom(A,R).)

Les éléments du dual A* sont donc les formes linéaires sur A[2].

Propriétés[modifier | modifier le code]

Bidual[modifier | modifier le code]

Le bidual de A est le dual du dual de A. Il existe un morphisme naturel de modules de A dans son bidual, mais le bidual de A n'est généralement pas isomorphe à A[1], même dans le cas des espaces vectoriels.

Somme et produit directs[modifier | modifier le code]

Conformément à leur définition générale, le produit direct et la somme directe de modules vérifient la propriété universelle suivante :

Dual de l'anneau[modifier | modifier le code]

  • Hom(R, B) = B. En particulier, Hom(R, R) = R. L'anneau R est son propre dual.
  • Plus généralement, d'après le paragraphe précédent, Hom(Rj, B) = Bj[1].

Notes et références[modifier | modifier le code]

  1. a b et c [1]
  2. a et b (en) « dual module », sur PlanetMath.